In the context of forecasting for renewable energy, it is common to produce point forecasts but it is also important to have information about the uncertainty of the forecast. To this extent, instead of providing a single measure for the prediction, lower and upper bound for the expected value for the solar radiation are used (prediction interval). This estimation of optimal prediction intervals requires simultaneous optimization of two objective measures: on one hand, it is important that the coverage probability of the interval is as close as possible to a given target value. On the other, in order to bound uncertainty, intervals must be narrow; this means that there is a trade-off between both objectives, as narrow intervals reduce the coverage probability for those solutions, as the actual value of solar radiation is more likely to fall outside the predicted margins. In this work we propose a multi-objective evolutionary approach that is able to optimize both goals simultaneously. The proposal uses neural networks to create complex non-linear models whose outputs are the upper and lower limits of the prediction intervals. Results have been compared with a single-objective optimization of similar neural network architectures and a baseline algorithm (quantile estimation with gradient boosting). Results show that the neural network is able to provide accurate results. Also, the multi-objective approach is able to obtain the best results and has also the advantage that a single run is able to obtain prediction intervals for any target coverage probability.
a b s t r a c tAn appropriate preprocessing of EEG signals is crucial to get high classification accuracy for Brain-Computer Interfaces (BCI). The raw EEG data are continuous signals in the timedomain that can be transformed by means of filters. Among them, spatial filters and selecting the most appropriate frequency-bands in the frequency domain are known to improve classification accuracy. However, because of the high variability among users, the filters must be properly adjusted to every user's data before competitive results can be obtained. In this paper we propose to use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for automatically tuning the filters. Spatial and frequency-selection filters are evolved to minimize both classification error and the number of frequency bands used. This evolutionary approach to filter optimization has been tested on data for different users from the BCI-III competition. The evolved filters provide higher accuracy than approaches used in the competition. Results are also consistent across different runs of CMA-ES.
The Frequency Assignment Problem (FAP) is one of the key issues in the design of GSM networks (Global System for Mobile communications), and will remain important in the foreseeable future. There are many versions of FAP, most of them benchmarking-like problems. We use a formulation of FAP, developed in published work, that focuses on aspects which are relevant for real-world GSM networks. In this paper, we have designed, adapted, and evaluated several types of metaheuristic for different time ranges. After a detailed statistical study, results indicate that these metaheuristics are very appropriate for this FAP. New interference results have been obtained, that significantly improve those published in previous research.
Esta es la versión de autor de la comunicación de congreso publicada en: This is an author produced version of a paper published in: AbstractThe Robosoccer simulator is a challenging environment for artificial intelligence, where a human has to program a team of agents and introduce it into a soccer virtual environment. Most usually, Robosoccer agents are programmed by hand. In some cases, agents make use of Machine learning (ML) to adapt and predict the behavior of the opposite team, but the bulk of the agent has been preprogrammed.The main aím of this paper is to transform Robosoccer into an interactíve game and let a human control a Robosoccer agent. Then ML techniques can be used to model his/her behavior from training instances generated during the play. This model will be used later to control a Robosoccer agent, thus imitating the human behavior. We have focused our research on low-level behavior, like looking for the ball, conducting the ball towards the goal, or scoring in the presence of opponent players. Results have shown that indeed, Robosoccer agents can be controlled by programs that model human play.
SUMMARYThis article addresses two issues in solar energy forecasting from the numerical weather prediction (NWP) models using machine learning. First, we are interested in determining the relevant information for the forecasting task. With this purpose, a study has been carried out to evaluate the influence on accuracy of the number of NWP grid nodes used as input for the forecasting model, as well as their relative importance. Several machine learning (support vector machines and gradient boosting) and feature selection algorithms (linear, ReliefF, and local information analysis) have been used in this study. The second aim is to be able to predict solar energy for locations where no previous production data are available. To address this goal, an approach consisting on modeling regions in the grid is proposed. Models (aggregate models) use as input attributes the meteorological variables relevant for the region and two new inputs to identify the location of each station: the latitude and the longitude. Those models can be used to predict energy production for existing stations and for new locations, represented by latitude and longitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.