Epileptic seizures have a great impact on the quality of life of people who suffer from them and further limit their independence. For this reason, a device that would be able to monitor patients’ health status and warn them for a possible epileptic seizure would improve their quality of life. With this aim, this article proposes the first seizure predictive model based on Ear EEG, ECG and PPG signals obtained by means of a device that can be used in a static and outpatient setting. This device has been tested with epileptic people in a clinical environment. By processing these data and using supervised machine learning techniques, different predictive models capable of classifying the state of the epileptic person into normal, pre-seizure and seizure have been developed. Subsequently, a reduced model based on Boosted Trees has been validated, obtaining a prediction accuracy of 91.5% and a sensitivity of 85.4%. Thus, based on the accuracy of the predictive model obtained, it can potentially serve as a support tool to determine the status epilepticus and prevent a seizure, thereby improving the quality of life of these people.
People with autism spectrum disorder (ASD) manifest great heterogeneity in their atypical sensory behaviors. It is estimated that 95% of people with ASD have a Sensory Process Disorder (SPD). People with ASD feel the need to control what happens in their environment. However, it is inevitable that new situations occur during a person's daily life. Therefore, it is important to monitor most of the circumstances they face in an attempt to predict the appearance of disorders that end up affecting their behavior. This paper presents the first steps towards the development of a system for knowing the value and effect on the SPD of different biological and environmental parameters. To obtain those variables, two electronic devices have been designed. The first one is an electronic system for capturing environmental variables such as luminosity or humidity, which is portable and mobile. The second electronic device is a soft wearable wristband which gets biological parameters. To know the effect of those variables on the SPD, a complete software platform has been implemented. Both devices upload day-today data to a cloud database where the information is stored in timeseries data of different parameters. The system uses the data to learn a personalized model that is designed to manage the SPD of the user. The main novelty is the use of sensor integration, data processing and machine learning techniques to develop a system able to classify the sensory load supported by a user with ASD while performing different activities. The results obtained so far prove the feasibility of the approach.
Blood pressure wave monitoring provides interesting information about the patient’s cardiovascular function. For this reason, this article proposes a non-invasive device capable of capturing the vibrations (pressure waves) produced by the carotid artery by means of a pressure sensor encapsulated in a closed dome filled with air. When the device is placed onto the outer skin of the carotid area, the vibrations of the artery will exert a deformation in the dome, which, in turn, will lead to a pressure increase in its inner air. Then, the sensor inside the dome captures this pressure increase. By combining the blood pressure wave obtained with this device together with the ECG signal, it is possible to help the screening of the cardiovascular system, obtaining parameters such as heart rate variability (HRV) and pulse transit time (PTT). The results show how the pressure wave has been successfully obtained in the carotid artery area, discerning the characteristic points of this signal. The features of this device compare well with previous works by other authors. The main advantages of the proposed device are the reduced size, the cuffless condition, and the potential to be a continuous ambulatory device. These features could be exploited in ambulatory tests.
Epilepsy is a chronic disease with a significant social impact, given that the patients and their families often live conditioned by the possibility of an epileptic seizure and its possible consequences, such as accidents, injuries, or even sudden unexplained death. In this context, ambulatory monitoring allows the collection of biomedical data about the patients’ health, thus gaining more knowledge about the physiological state and daily activities of each patient in a more personalized manner. For this reason, this article proposes a novel monitoring system composed of different sensors capable of synchronously recording electrocardiogram (ECG), photoplethysmogram (PPG), and ear electroencephalogram (EEG) signals and storing them for further processing and analysis in a microSD card. This system can be used in a static and/or ambulatory way, providing information about the health state through features extracted from the ear EEG signal and the calculation of the heart rate variability (HRV) and pulse travel time (PTT). The different applied processing techniques to improve the quality of these signals are described in this work. A novel algorithm used to compute HRV and PTT robustly and accurately in ambulatory settings is also described. The developed device has also been validated and compared with other commercial systems obtaining similar results. In this way, based on the quality of the obtained signals and the low variability of the computed parameters, even in ambulatory conditions, the developed device can potentially serve as a support tool for clinical decision-taking stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.