[1] The California Current System (CCS) is expected to experience the ecological impacts of ocean acidification (OA) earlier than most other ocean regions because coastal upwelling brings old, CO 2 -rich water relatively close to the surface ocean. Historical inorganic carbon measurements are scarce, so the progression of OA in the CCS is unknown. We used a multiple linear regression approach to generate empirical models using oxygen (O 2 ), temperature (T), salinity (S), and sigma theta (s q ) as proxy variables to reconstruct pH, carbonate saturation states, carbonate ion concentration ([CO 3 2À ]), dissolved inorganic carbon (DIC) concentration, and total alkalinity (TA) in the southern CCS. The calibration data included high-quality measurements of carbon, oxygen, and other hydrographic variables, collected during a cruise from British Columbia to Baja California in May-June 2007. All resulting empirical relationships were robust, with r 2 values >0.92 and low root mean square errors. Estimated and measured carbon chemistry matched very well for independent data sets from the CalCOFI and IMECOCAL programs. Reconstructed CCS pH and saturation states for 2005-2011 reveal a pronounced seasonal cycle and inter-annual variability in the upper water column. Deeper in the water column, conditions are stable throughout the annual cycle, with perennially low pH and saturation states. Over sub-decadal time scales, these empirical models provide a valuable tool for reconstructing carbonate chemistry related to ocean acidification where direct observations are limited. However, progressive increases in anthropogenic CO 2 content of southern CCS water masses must be carefully addressed to apply the models over longer time scales.
Syntheses of carbonate chemistry spatial patterns are important for predicting ocean acidification impacts, but are lacking in coastal oceans. Here, we show that along the North American Atlantic and Gulf coasts the meridional distributions of dissolved inorganic carbon (DIC) and carbonate mineral saturation state (Ω) are controlled by partial equilibrium with the atmosphere resulting in relatively low DIC and high Ω in warm southern waters and the opposite in cold northern waters. However, pH and the partial pressure of CO2 (pCO2) do not exhibit a simple spatial pattern and are controlled by local physical and net biological processes which impede equilibrium with the atmosphere. Along the Pacific coast, upwelling brings subsurface waters with low Ω and pH to the surface where net biological production works to raise their values. Different temperature sensitivities of carbonate properties and different timescales of influencing processes lead to contrasting property distributions within and among margins.
This study reports the potential contribution of organic bases to the alkalinity of seawater samples. The concentration of organic bases in these samples was inferred from the difference between the measured alkalinity and that calculated from a knowledge of pH and concentrations of the various inorganic acid‐bases species such as total carbon, total boron, and so on. Significant concentrations of such organic bases were measured in cultures of the marine microalgae Rhodomonas sp. (800 µmol kg−1) and Isochrysis aff. Galbana (400 µmol kg−1), as well as in three marine environments (northern gulf of California, México; San Quintín Bay, B.C., Mexico; and San Diego Bay). These three sites are characterized by significant biological activity and restricted mixing, and the organic bases were found at concentrations greater than 50 µmol kg−1 in each of these three locations.
Oxygen minimum zones (OMZs) are important sources of CO 2 to the atmosphere when physical forces bring subsurface water with high dissolved inorganic carbon (DIC) to the surface. This study examines, for the first time, the influence of the OMZ of the coastal North Eastern Tropical Pacific off Mexico on surface CO 2 fluxes. We use variations in the oxycline depth and subsurface water masses to discern physical oceanographic influences. During two cruises, in November 2009 and August 2010, DIC and total alkalinity (TA) measurements were used to estimate pCO 2 and air-sea CO 2 fluxes. At the OMZ layer, Subtropical Subsurface Water (StSsW) was found to have high pCO 2 values (1290 6 70 latm). Due to strong vertical stratification, however, the relationship between DpCO 2 at the air-sea interface and the oxycline/StSsW upper limit depth was weak. During November, the region was a weak source of CO 2 to the atmosphere (up to 2.5 mmol C m ) prevented subsurface mixing of water from the OMZ to the upper layer; particularly in November 2009 which was during an El Niño event. Results suggest that advection of surface water masses, reinforced by strong vertical stratification, controlled surface pCO 2 , and air-sea CO 2 fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.