Background::
Treatment of the COVID19 pandemic requires drug development. Boron-containing compounds are attractive chemical agents, some of them act as proteases inhibitors.
Objective::
The present study explores the role of boronic moieties in molecules interacting on the binding site of the SARS-CoV-2 main protease.
Methods::
Conventional docking procedure was applied by assaying boron-free and boron-containing compounds on the recently reported crystal structure of SARS-CoV-2 main protease (PDB code: 6LU7). The set of 150 ligands includes bortezomib and inhibitors of coronavirus proteases.
Results::
Most of the tested compounds share contact with key residues and poses on the cleavage pocket. Those compounds with a boron atom in its structure were often estimated with higher affinity than boron-free analogues.
Conclusion::
Interactions and the affinity of boron-containing peptidomimetics strongly suggest boron-moieties increases affinity on the main protease, as it should be tested by in vitro assays. A Bis-boron-containing compound previously tested as active on SARS-virus protease and bortezomib were identified as potent ligands. These advances may be relevant for drug designing, in addition as to the suggestion of testing available boron-containing drugs in patients with COVID19 infection.
Myeloperoxidase (MPO) is an enzyme present in human neutrophils, whose main role is to provide defenses against invading pathogens. However, highly reactive oxygen species (ROS), such as HOCl, are generated from MPO activity, leading to chronic diseases. Herein, we report the microwave-assisted synthesis of a new series of stable (E)-(2-hydroxy)-α-aminocinnamic acids, in good yields, which are structurally analogous to the natural products (Z)-2-hydroxycinnamic acids. The radical scavenging activity (RSA), MPO inhibitory activity and cytotoxicity of the reported compounds were evaluated. The hydroxy derivatives showed the most potent RSA, reducing the presence of DPPH and ABTS radicals by 77% at 0.32 mM and 100% at 0.04 mM, respectively. Their mechanism of action was modeled with BDEOH, IP and ΔEH-L theoretical calculations at the B3LYP/6 − 31 + G(d,p) level. Compounds showed in vitro inhibitory activity of MPO with IC50 values comparable to indomethacin and 5-ASA, but cytotoxicities below 15% at 100–200 µM. Docking calculations revealed that they reach the amino acid residues present in the distal cavity of the MPO active site, where both the amino and carboxylic acid groups of the α-aminopropenoic acid arm are structural requirements for anchoring. (E)-2-hydroxy-α-aminocinnamic acids have been synthesized for the first time with a reliable method and their antioxidant properties demonstrated.
Preclinical and clinical evidence supports melatonin and its analogues as potential treatment for diseases involving cognitive deficit such as Alzheimer’s disease. In this work, we evaluated by in silico studies a set of boron-containing melatonin analogues on MT1 and MT2 receptors. Then, we synthesized a compound (borolatonin) identified as potent agonist. After chemical characterization, its evaluation in a rat model with cognitive deficit showed that it induced ameliorative effects such as those induced by equimolar administration of melatonin in behavioral tests and in neuronal immunohistochemistry assays. Our results suggest the observed effects are by means of action on the melatonin system. Further studies are required to clarify the mechanism(s) of action, as the beneficial effects on disturbed memory by gonadectomy in male rats are attractive.
The supramolecular structures of H2pOx·2S (S = DMSO, DMF, ⅓(MeOH·2W), W) solvates were stablished. The energetics of amide N–H⋯O and n/π → π* interactions maintain the crystal network and the reversibility between polymorphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.