Key message The optimization of training populations and the use of diagnostic markers as fixed effects increase the predictive ability of genomic prediction models in a cooperative wheat breeding panel. Abstract Plant breeding programs often have access to a large amount of historical data that is highly unbalanced, particularly across years. This study examined approaches to utilize these data sets as training populations to integrate genomic selection into existing pipelines. We used cross-validation to evaluate predictive ability in an unbalanced data set of 467 winter wheat ( Triticum aestivum L.) genotypes evaluated in the Gulf Atlantic Wheat Nursery from 2008 to 2016. We evaluated the impact of different training population sizes and training population selection methods (Random, Clustering, PEVmean and PEVmean1) on predictive ability. We also evaluated inclusion of markers associated with major genes as fixed effects in prediction models for heading date, plant height, and resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici) . Increases in predictive ability as the size of the training population increased were more evident for Random and Clustering training population selection methods than for PEVmean and PEVmean1. The selection methods based on minimization of the prediction error variance (PEV) outperformed the Random and Clustering methods across all the population sizes. Major genes added as fixed effects always improved model predictive ability, with the greatest gains coming from combinations of multiple genes. Maximum predictabilities among all prediction methods were 0.64 for grain yield, 0.56 for test weight, 0.71 for heading date, 0.73 for plant height, and 0.60 for powdery mildew resistance. Our results demonstrate the utility of combining unbalanced phenotypic records with genome-wide SNP marker data for predicting the performance of untested genotypes. Electronic supplementary material The online version of this article (10.1007/s00122-019-03276-6) contains supplementary material, which is available to authorized users.
BackgroundGenomic selection has the potential to increase genetic gains by using molecular markers as predictors of breeding values of individuals. This study evaluated the accuracy of predictions for grain yield, heading date, plant height, and yield components in soft red winter wheat under different prediction scenarios. Response to selection for grain yield was also compared across different selection strategies- phenotypic, marker-based, genomic, combination of phenotypic and genomic, and random selections.ResultsGenomic selection was implemented through a ridge regression best linear unbiased prediction model in two scenarios- cross-validations and independent predictions. Accuracy for cross-validations was assessed using a diverse panel under different marker number, training population size, relatedness between training and validation populations, and inclusion of fixed effect in the model. The population in the first scenario was then trained and used to predict grain yield of biparental populations for independent validations. Using subsets of significant markers from association mapping increased accuracy by 64–70% for grain yield but resulted in lower accuracy for traits with high heritability such as plant height. Increasing size of training population resulted in an increase in accuracy, with maximum values reached when ~ 60% of the lines were used as a training panel. Predictions using related subpopulations also resulted in higher accuracies. Inclusion of major growth habit genes as fixed effect in the model caused increase in grain yield accuracy under a cross-validation procedure. Independent predictions resulted in accuracy ranging between − 0.14 and 0.43, dependent on the grouping of site-year data for the training and validation populations. Genomic selection was “superior” to marker-based selection in terms of response to selection for yield. Supplementing phenotypic with genomic selection resulted in approximately 10% gain in response compared to using phenotypic selection alone.ConclusionsOur results showed the effects of different factors on accuracy for yield and agronomic traits. Among the factors studied, training population size and relatedness between training and validation population had the greatest impact on accuracy. Ultimately, combining phenotypic with genomic selection would be relevant for accelerating genetic gains for yield in winter wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.