The functions of soil water retention and hydraulic conductivity are indispensable for the characterization and modeling of the infiltration and water transfer processes in the vadose zone. In the case of the Brazilian semi-arid region, characterized by the scarcity of water resources, there is a lack of information on the hydrodynamic properties of the soil. Also, these properties have numerous factors of variability, requiring the characterization of their magnitude and distribution in space. This research presents an analysis of the infiltration process and the hydrodynamic properties of the soil under native Caatinga forest, observing its spatial distribution. This vegetation is typical of the Brazilian semi-arid region. One developed a 48-point grid in an area of approximately 875 m2, and applied on it the Beerkan methodology. The analyzes were performed based on the application of the BEST-Slope algorithm and statistical measures of the position, dispersion, and adherence tests. The results showed medium to high variability indices for the hydrodynamic properties, with random spatial distribution, despite the verification of a homogeneous texture in the area. Thus, it was found that the soil structure was predominant in the processes of water infiltration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.