The Aedes aegypti mosquito is the main vector for several diseases of global importance, such as dengue and yellow fever. This species was first identified on Madeira Island in 2005, and between 2012 and 2013 was responsible for an outbreak of dengue that affected several thousand people. However, the potential distribution of the species on the island remains poorly investigated. Here we assess the suitability of current and future climatic conditions to the species on the island and complement this assessment with estimates of the suitability of land use and human settlement conditions. We used four modelling algorithms (boosted regression trees, generalized additive models, generalized linear models and random forest) and data on the distribution of the species worldwide and across the island. For both climatic and non-climatic factors, suitability estimates predicted the current distribution of the species with good accuracy (mean area under the Receiver Operating Characteristic curve = 0.88 ±0.06, mean true skill statistic = 0.72 ±0.1). Minimum temperature of coldest month was the most influential climatic predictor, while human population density, residential housing density and public spaces were the most influential predictors describing land use and human settlement conditions. Suitable areas under current climates are predicted to occur mainly in the warmer and densely inhabited coastal areas of the southern part of the island, where the species is already established. By mid-century (2041–2060), the extent of climatically suitable areas is expected to increase, mainly towards higher altitudes and in the eastern part of the island. Our work shows that ongoing efforts to monitor and prevent the spread of Ae. aegypti on Madeira Island will have to increasingly consider the effects of climate change.
The perfect storm model that was elaborated for the HIV-1M pandemic has also been used to explain the emergence of HIV-2, a second human immunodeficiency virus-acquired immunodeficiency syndrome (HIV-AIDS) that became an epidemic in Guinea-Bissau, West Africa. The use of this model creates epidemiological generalizations, ecological oversimplifications and historical misunderstandings as its assumptions—an urban center with explosive population growth, a high level of commercial sex and a surge in STDs, a network of mechanical transport and country-wide, en masse mobile campaigns—are absent from the historical record. This model fails to explain how the HIV-2 epidemic actually came about. This is the first study to conduct an exhaustive examination of sociohistorical contextual developments and align them with environmental, virological and epidemiological data. The interdisciplinary dialogue indicates that the emergence of the HIV-2 epidemic piggybacked on local sociopolitical transformations. The war’s indirect effects on ecological relations, mobility and sociability were acute in rural areas and are a key to the HIV-2 epidemic. This setting had the natural host of the virus, the population numbers, the mobility trends and the use of technology on a scale needed to foster viral adaptation and amplification. The present analysis suggests new reflections on the processes of zoonotic spillovers and disease emergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.