Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor ss superfamily. Family members are expressed during limb development, endochondral ossification, early fracture, and cartilage repair. The activity of BMPs was first identified in the 1960s but the proteins responsible for bone induction were unknown until the purification and cloning of human BMPs in the 1980s. To date, about 15 BMP family members have been identified and characterized. The signal triggered by BMPs is transduced through serine/threonine kinase receptors, type I and II subtypes. Three type I receptors have been shown to bind BMP ligands, namely: type IA and IB BMP receptors and type IA activin receptors. BMPs seem to be involved in the regulation of cell proliferation, survival, differentiation and apoptosis, but their hallmark is their ability to induce bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. This suggests that, in the future, they may play a major role in the treatment of bone diseases. Several animal studies have illustrated the potential of BMPs to enhance spinal fusion, repair critical-size defects, accelerate union, and heal articular cartilage lesions. Difficulties in producing and purifying BMPs from bone tissue have prompted the attempts made by several laboratories, including ours, to express these proteins in the recombinant form in heterologous systems. This review focuses on BMP structure, molecular mechanisms of action and significance and potential applications in medical, dental and veterinary practice for the treatment of cartilage and bone-related diseases.
Titanium (Ti) and its alloys are widely used in dental implants and hip-prostheses due to their excellent biocompatibility. Growing evidence support that surface degradation due to corrosion and wear processes, contribute to implant failure, since the release of metallic ions and wear particles generate local tissue reactions (peri-implant inflammatory reactions). The generated ions and wear debris (particles at the micron and nanoscale) stay, in a first moment, at the interface implant-bone. However, depending on their size, they can enter blood circulation possibly contributing to systemic reactions and toxicities. Most of the nanotoxicological studies with titanium dioxide nanoparticles (TiO 2 NPs) use conventional two-dimensional cell culture monolayers to explore macrophage and monocyte activation, where limited information regarding bone cells is available. Recently three-dimensional models have been gaining prominence since they present a greater anatomical and physiological relevance. Taking this into consideration, in this work we developed a human osteoblast-like spheroid model, which closely mimics bone cell-cell interactions, providing a more realistic scenario for nanotoxicological studies. The treatment of spheroids with different concentrations of TiO 2 NPs during 72 h did not change their viability significantly. Though, higher concentrations of TiO 2 NPs influenced osteoblast cell cycle without interfering in their ability to differentiate and mineralize. For higher concentration of TiO 2 NPs, collagen deposition and pro-inflammatory cytokine, chemokine and growth factor secretion (involved in osteolysis and bone homeostasis) increased. These results raise the possible use of this model in nanotoxicological studies of osseointegrated devices and demonstrate a possible therapeutic potential of this TiO 2 NPs to prevent or reverse bone resorption.
BackgroundQuantitative real time polymerase chain reaction (qPCR) is an extremely powerful technique for monitoring gene expression. The quantity of the messenger ribonucleic acids (mRNA) of interest should be normalized using a reference gene, in order to avoid unreliable results originated by the obtained RNA quality and quantity, manipulation errors and inhibitory contaminants. A reference gene is any gene that is stably and consistently expressed under the conditions being studied. Completely false data can be generated if a reference gene is not chosen adequately.ResultsIn the present study, we compared expression levels of five putative reference genes (HPRT1, ACTB, GAPDH, RPL13A and B2M) in primary cultures of four different human cells: mesenchymal stromal cells obtained from bone marrow, adipose tissue or umbilical cord Whartońs Jelly, and dermal fibroblasts, under different expansion and differentiation conditions. We observed that reference genes are not the same for different cells under the same culture conditions.ConclusionMost stable reference genes under our experimental conditions were: RPL13A for adipose tissue- and Whartońs Jelly-derived mesenchymal stromal cells, and HPRT1 for bone marrow-derived mesenchymal stromal cells and dermal fibroblasts. ACTB was the most unstable gene when evaluating adipose tissue- and Whartońs Jelly-derived mesenchymal stromal cells, whilst GAPDH and B2M were the most unstable genes for bone marrow-derived mesenchymal stromal cells and dermal fibroblasts, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.