Morphine is one of the most effective drugs used for pain management, but it is also highly addictive. Morphine elicits acute and long-term adaptive changes at cellular and molecular level in the brain, which play a critical role in the development of tolerance, dependence and addiction. Previous studies indicated that the dopamine D receptor (D R) activation counteracts morphine-induced adaptive changes of the μ opioid receptor (MOR) signaling in the striosomes of the caudate putamen (CPu), as well as the induction of several Fos family transcription factors. Thus, it has been suggested that D R could play an important role avoiding some of the addictive effects of morphine. Here, using different drugs administration paradigms, it is determined that the D R agonist PD168,077 prevents morphine-induced activation of the nigrostriatal dopamine pathway and morphological changes of substantia nigra pars compacta (SNc) dopamine neurons, leading to a restoration of dopamine levels and metabolism in the CPu. Results from receptor autoradiography indicate that D R activation modulates MOR function in the substantia nigra pars reticulata (SNr) and the striosomes of the CPu, suggesting that these regions are critically involved in the modulation of SNc dopamine neuronal function through a functional D R/MOR interaction. In addition, D R activation counteracts the rewarding effects of morphine, as well as the development of hyperlocomotion and physical dependence without any effect on its analgesic properties. These results provide a novel role of D R agonist as a pharmacological strategy to prevent the adverse effects of morphine in the treatment of pain.
Background: P301S tau transgenic mice show age-dependent accumulation of neurofibrillary tangles in the brainstem, hippocampus, and neocortex, leading to neuronal loss and cognitive deterioration. However, there is hitherto only sparse documentation of the role of neuroinflammation in tau mouse models. Thus, we analyzed longitudinal microglial activation by small animal 18 kDa translocator protein positron-emission-tomography (TSPO μPET) imaging in vivo, in conjunction with terminal assessment of tau pathology, spatial learning, and cerebral glucose metabolism. Methods: Transgenic P301S (n = 33) and wild-type (n = 18) female mice were imaged by 18 F-GE-180 TSPO μPET at the ages of 1.9, 3.9, and 6.4 months. We conducted behavioral testing in the Morris water maze, 18 Ffluordesoxyglucose (18 F-FDG) μPET, and AT8 tau immunohistochemistry at 6.3-6.7 months. Terminal microglial immunohistochemistry served for validation of TSPO μPET results in vivo, applying target regions in the brainstem, cortex, cerebellum, and hippocampus. We compared the results with our historical data in amyloid-β mouse models. Results: TSPO expression in all target regions of P301S mice increased exponentially from 1.9 to 6.4 months, leading to significant differences in the contrasts with wild-type mice at 6.4 months (+ 11-23%, all p < 0.001), but the apparent microgliosis proceeded more slowly than in our experience in amyloid-β mouse models. Spatial learning and glucose metabolism of AT8-positive P301S mice were significantly impaired at 6.3-6.5 months compared to the wild-type group. Longitudinal increases in TSPO expression predicted greater tau accumulation and lesser spatial learning performance at 6.3-6.7 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.