Advances in carbon capture techniques and demands in alternative fuel sources have increased over the past couple of decades. The Fischer-Tropsch Synthesis (FTS) provides a viable way to produce hydrocarbons from natural gas, coal, CO2, or biomass. However, current comprehensive models for FTS encompass large number of reacting species, readsorption and conversion of primary products, surface intermediates, and coverage-dependent reaction rates. To accurately predict the products obtained through the process a reduced order model has been developed. By reducing the number of parameters of an existing comprehensive model, uncertainty is introduced. The uncertainty can be quantified by using discrepancy functions within the chemical rate equations, there by representing the reduced order model as a set of stochastic differential equations. Representing the uncertainty as model discrepancy functions, a Bayesian approach is used to calibrate the reduced order model to data obtained from literature. Through a Bayesian Smoothing Splines (BSS-ANOVA) framework, the stochastic differential equations are decoupled into deterministic differential equations and stochastic coefficients. The parameters are solved for using a Sequential Monte Carlo approach with importance sampling. Through the use of these stochastic coefficients, fidelity is restored to the reduced order model. Thus, the model can be fully described by fewer parameters than initially needed, as well as a reduction in the computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.