Game Theory (GT) has been used with significant success to formulate, and either design or optimize, the operation of many representative communications and networking scenarios. The games in these scenarios involve, as usual, diverse players with conflicting goals. This paper primarily surveys the literature that has applied theoretical games to wireless networks, emphasizing use cases of upcoming Multi-Access Edge Computing (MEC). MEC is relatively new and offers cloud services at the network periphery, aiming to reduce service latency backhaul load, and enhance relevant operational aspects such as Quality of Experience or security. Our presentation of GT is focused on the major challenges imposed by MEC services over the wireless resources. The survey is divided into classical and evolutionary games. Then, our discussion proceeds to more specific aspects which have a considerable impact on the game's usefulness, namely: rational vs. evolving strategies, cooperation among players, available game information, the way the game is played (single turn, repeated), the game's model evaluation, and how the model results can be applied for both optimizing resource-constrained resources and balancing diverse trade-offs in real edge networking scenarios. Finally, we reflect on lessons learned, highlighting future trends and research directions for applying theoretical model games in upcoming MEC services, considering both network design issues and usage scenarios.
Overweight and obesity are major problems in today’s society, driving the prevalence of diabetes and its related complications. It is important to understand the molecular mechanisms underlying the chronic complications in diabetes in order to develop better therapeutic approaches for these conditions. Some of the most important complications include macrovascular abnormalities, e.g., heart disease and atherosclerosis, and microvascular abnormalities, e.g., retinopathy, nephropathy and neuropathy, in particular diabetic foot ulceration. The highly conserved endogenous small non-coding RNA molecules, the micro RNAs (miRNAs) have in recent years been found to be involved in a number of biological processes, including the pathogenesis of disease. Their main function is to regulate post-transcriptional gene expression by binding to their target messenger RNAs (mRNAs), leading to mRNA degradation, suppression of translation or even gene activation. These molecules are promising therapeutic targets and demonstrate great potential as diagnostic biomarkers for disease. This review aims to describe the most recent findings regarding the important roles of miRNAs in diabetes and its complications, with special attention given to the different phases of diabetic wound healing.
Treatment for chronic diabetic foot ulcers is limited by the inability to simultaneously address the excessive inflammation and impaired re-epithelization and remodeling. Impaired re-epithelization leads to significantly delayed wound closure and excessive inflammation causes tissue destruction, both enhancing wound pathogen colonization. Among many differentially expressed microRNAs, miR-155 is significantly upregulated and fibroblast growth factor 7 (FGF7) mRNA (target of miR-155) and protein are suppressed in diabetic skin, when compared to controls, leading us to hypothesize that topical miR-155 inhibition would improve diabetic wound healing by restoring FGF7 expression. In vitro inhibition of miR-155 increased human keratinocyte scratch closure and topical inhibition of miR-155 in vivo in wounds increased murine FGF7 protein expression and significantly enhanced diabetic wound healing. Moreover, we show that miR-155 inhibition leads to a reduction in wound inflammation, in accordance with known pro-inflammatory actions of miR-155. Our results demonstrate, for the first time, that topical miR-155 inhibition increases diabetic wound fibroblast growth factor 7 expression in diabetic wounds, which, in turn, increases re-epithelization and, consequently, accelerates wound closure. Topical miR-155 inhibition targets both excessive inflammation and impaired re-epithelization and remodeling, being a potentially new and effective treatment for chronic diabetic foot ulcers.
Immune systems have evolved to recognize and eliminate pathogens and damaged cells. In humans, it is estimated to recognize 10 9 epitopes and natural selection ensures that clonally expanded cells replace unstimulated cells and overall immune cell numbers remain stationary.But, with age, it faces continuous repertoire restriction and concomitant accumulation of primed cells. Changes shaping the aging immune system have bitter consequences because, as inflammatory responses gain intensity and duration, tissue-damaging immunity and inflammatory disease arise.During inflammation, the glycolytic flux cannot cope with increasing ATP demands, limiting the immune response's extent. In diabetes, higher glucose availability stretches the glycolytic limit, dysregulating proteostasis and increasing T-cell expansion. Long-term hyperglycemia exerts an accumulating effect, leading to higher inflammatory cytokine levels and increased cytotoxic mediator secretion upon infection, a phenomenon known as diabetic chronic inflammation.Here we review the etiology of diabetic chronic inflammation and its consequences on wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.