It is widely believed that a defining characteristic of ionic liquids (or low-temperature molten salts) is that they exert no measurable vapour pressure, and hence cannot be distilled. Here we demonstrate that this is unfounded, and that many ionic liquids can be distilled at low pressure without decomposition. Ionic liquids represent matter solely composed of ions, and so are perceived as non-volatile substances. During the last decade, interest in the field of ionic liquids has burgeoned, producing a wealth of intellectual and technological challenges and opportunities for the production of new chemical and extractive processes, fuel cells and batteries, and new composite materials. Much of this potential is underpinned by their presumed involatility. This characteristic, however, can severely restrict the attainability of high purity levels for ionic liquids (when they contain poorly volatile components) in recycling schemes, as well as excluding their use in gas-phase processes. We anticipate that our demonstration that some selected families of commonly used aprotic ionic liquids can be distilled at 200-300 degrees C and low pressure, with concomitant recovery of significant amounts of pure substance, will permit these currently excluded applications to be realized.
Nanometer-scale structuring in room-temperature ionic liquids is observed using molecular simulation. The ionic liquids studied belong to the 1-alkyl-3-methylimidazolium family with hexafluorophosphate or with bis(trifluoromethanesulfonyl)amide as the anions, [C(n)mim][PF(6)] or [C(n)mim][(CF(3)SO(2))(2)N], respectively. They were represented, for the first time in a simulation study focusing on long-range structures, by an all-atom force field of the AMBER/OPLS_AA family containing parameters developed specifically for these compounds. For ionic liquids with alkyl side chains longer than or equal to C(4), aggregation of the alkyl chains in nonpolar domains is observed. These domains permeate a tridimensional network of ionic channels formed by anions and by the imidazolium rings of the cations. The nanostructures can be visualized in a conspicuous way simply by color coding the two types of domains (in this work, we chose red = polar and green = nonpolar). As the length of the alkyl chain increases, the nonpolar domains become larger and more connected and cause swelling of the ionic network, in a manner analogous to systems exhibiting microphase separation. The consequences of these nanostructural features on the properties of the ionic liquids are analyzed.
During the past decade, ionic-liquid-based Aqueous Biphasic Systems (ABS) have been the focus of a significant amount of research. Based on a compilation and analysis of the data hitherto reported, this critical review provides a judicious assessment of the available literature on the subject. We evaluate the quality of the data and establish the main drawbacks found in the literature. We discuss the main issues which govern the phase behaviour of ionic-liquid-based ABS, and we highlight future challenges to the field. In particular, the effect of the ionic liquid structure and the various types of salting-out agents (inorganic or organic salts, amino acids and carbohydrates) on the phase equilibria of ABS is discussed, as well as the influence of secondary parameters such as temperature and pH. More recent approaches using ionic liquids as additives or as replacements for common salts in polymer-based ABS are also presented and discussed to emphasize the expanding number of aqueous two-phase systems that can actually be obtained. Finally, we address two of the main applications of ionic liquid-based ABS: extraction of biomolecules and other added-value compounds, and their use as alternative approaches for removing and recovering ionic liquids from aqueous media.
A new force field for the molecular modeling of ionic liquids of the dialkylimidazolium cation family was constructed. The model is based on the OPLS-AA/AMBER framework. Ab initio calculations were performed to obtain several terms in the force field not yet defined in the literature. These include torsion energy profiles and distributions of atomic charges that blend smoothly with the OPLS-AA specification for alkyl chains. Validation was carried out by comparing simulated and experimental data on fourteen different salts, comprising three types of anion and five lengths of alkyl chain, in both the crystalline and liquid phases. The present model can be regarded as a step toward a general force field for ionic liquids of the imidazolium cation family that was built in a systematic way, is easily integrated with OPLS-AA/AMBER, and is transferable between different combinations of cation−anion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.