Acute diarrheal disease (ADD) can be caused by a range of pathogens, including bacteria, viruses, and parasites. Conventional diagnostic methods, such as culture, microscopy, biochemical assays, and enzyme-linked immunosorbent assays (ELISA), are laborious and time-consuming and lack sensitivity. Combined, the array of tests performed on a single specimen can increase the turnaround time (TAT) significantly. We validated a 19plex laboratory-developed gastrointestinal pathogen panel (GPP) using Luminex xTAG analyte-specific reagents (ASRs) to simultaneously screen directly in fecal specimens for diarrhea-causing pathogens, including bacteria (Campylobacter jejuni, Salmonella spp., Shigella spp., enterotoxigenic Escherichia coli [ETEC], Shiga toxin-producing E. coli [STEC], E. coli O157:H7, Vibrio cholerae, Yersinia enterocolitica, and toxigenic Clostridium difficile), parasites (Giardia lamblia, Cryptosporidium spp., and Entamoeba histolytica), and viruses (norovirus GI and GII, adenovirus 40/41, and rotavirus A). Performance characteristics of GPP ASRs were determined using 48 reference isolates and 254 clinical specimens. Stool specimens from individuals with diarrhea were tested for pathogens using conventional and molecular methods. Using the predictive methods as standards, the sensitivities of the GPP ASRs were 100% for adenovirus 40/41, norovirus, rotavirus A, Vibrio cholerae, Yersinia enterocolitica, Entamoeba histolytica, Cryptosporidium spp., and E. coli O157:H7; 95% for Giardia lamblia; 94% for ETEC and STEC; 93% for Shigella spp.; 92% for Salmonella spp.; 91% for C. difficile A/B toxins; and 90% for Campylobacter jejuni. The overall comparative performance of the GPP ASRs with conventional methods in clinical samples was 94.5% (range, 90% to 97%), with 99% (99.0% to 99.9%) specificity. Implementation of the GPP ASRs enables our public health laboratory to offer highly sensitive and specific screening and identification of the major ADD-causing pathogens.
We evaluate the clinical performance of the Luminex xTAG gastrointestinal (GI) pathogen in vitro diagnostic (IVD) assay in a comparison between clinical and public health laboratories. The site reproducibility study showed 98.7% sensitivity with high positive and negative agreement values (96.2% and 99.8%, respectively), while assay performance against confirmatory methods resulted in 96.4% sensitivity with similar positive and negative agreement values (90.1% and 99.5%, respectively). Highthroughput detection of multiple GI pathogens improved turnaround time, consolidated laboratory workflow, and simplified stool culture practices, thus reducing the overall cost and number of specimens processed.
Social outings can trigger influenza transmission, especially in children and elderly. In contrast, school closures are associated with reduced influenza incidence in school-aged children. While influenza surveillance modelling studies typically account for holidays and mass gatherings, age-specific effects of school breaks, sporting events and commonly celebrated observances are not fully explored. We examined the impact of school holidays, social events and religious observances for six age groups (all ages, ⩽4, 5–24, 25–44, 45–64, ⩾65 years) on four influenza outcomes (tests, positives, influenza A and influenza B) as reported by the City of Milwaukee Health Department Laboratory, Milwaukee, Wisconsin from 2004 to 2009. We characterised holiday effects by analysing average weekly counts in negative binomial regression models controlling for weather and seasonal incidence fluctuations. We estimated age-specific annual peak timing and compared influenza outcomes before, during and after school breaks. During the 118 university holiday weeks, average weekly tests were lower than in 140 school term weeks (5.93 vs. 11.99 cases/week, P < 0.005). The dampening of tests during Winter Break was evident in all ages and in those 5–24 years (RR = 0.31; 95% CI 0.22–0.41 vs. RR = 0.14; 95% CI 0.09–0.22, respectively). A significant increase in tests was observed during Spring Break in 45–64 years old adults (RR = 2.12; 95% CI 1.14–3.96). Milwaukee Public Schools holiday breaks showed similar amplification and dampening effects. Overall, calendar effects depend on the proximity and alignment of an individual holiday to age-specific and influenza outcome-specific peak timing. Better quantification of individual holiday effects, tailored to specific age groups, should improve influenza prevention measures.
Influenza virus is a respiratory pathogen that causes a high degree of morbidity and mortality every year in multiple parts of the world. Therefore, precise diagnosis of the infecting strain and rapid high-throughput screening of vast numbers of clinical samples is paramount to control the spread of pandemic infections. Current clinical diagnoses of influenza infections are based on serologic testing, polymerase chain reaction, direct specimen immunofluorescence and cell culture 1,2 .Here, we report the development of a novel diagnostic technique used to detect live influenza viruses. We used the mouse-adapted human A/PR/8/34 (PR8, H1N1) virus 3 to test the efficacy of this technique using MDCK cells 4 . MDCK cells (10 4 or 5 x 10 3 per well) were cultured in 96-or 384-well plates, infected with PR8 and viral proteins were detected using anti-M2 followed by an IR dye-conjugated secondary antibody. M2 5 and hemagglutinin 1 are two major marker proteins used in many different diagnostic assays. Employing IR-dye-conjugated secondary antibodies minimized the autofluorescence associated with other fluorescent dyes. The use of anti-M2 antibody allowed us to use the antigen-specific fluorescence intensity as a direct metric of viral quantity. To enumerate the fluorescence intensity, we used the LI-COR Odyssey-based IR scanner. This system uses two channel laser-based IR detections to identify fluorophores and differentiate them from background noise. The first channel excites at 680 nm and emits at 700 nm to help quantify the background. The second channel detects fluorophores that excite at 780 nm and emit at 800 nm. Scanning of PR8-infected MDCK cells in the IR scanner indicated a viral titer-dependent bright fluorescence. A positive correlation of fluorescence intensity to virus titer starting from 10 2 -10 5 PFU could be consistently observed. Minimal but detectable positivity consistently seen with 10 2 -10 3 PFU PR8 viral titers demonstrated the high sensitivity of the near-IR dyes. The signal-to-noise ratio was determined by comparing the mock-infected or isotype antibody-treated MDCK cells.Using the fluorescence intensities from 96-or 384-well plate formats, we constructed standard titration curves. In these calculations, the first variable is the viral titer while the second variable is the fluorescence intensity. Therefore, we used the exponential distribution to generate a curve-fit to determine the polynomial relationship between the viral titers and fluorescence intensities. Collectively, we conclude that IR dye-based protein detection system can help diagnose infecting viral strains and precisely enumerate the titer of the infecting pathogens. Video LinkThe video component of this article can be found at
Since early detection of pathogens and their virulence factors contribute to intervention and control strategies, we assessed the enteropathogens in diarrhoea disease and investigated the link between toxigenic strains of Escherichia coli from stool and drinking-water sources; and determined the expression of toxin genes by antibiotic-resistant E. coli in Lagos, Nigeria. This was compared with isolates from diarrhoeal stool and water from Wisconsin, USA. The new Luminex xTAG GPP (Gastroplex) technique and conventional real-time PCR were used to profile enteric pathogens and E. coli toxin gene isolates, respectively. Results showed the pathogen profile of stool and indicated a relationship between E. coli toxin genes in water and stool from Lagos which was absent in Wisconsin isolates. The Gastroplex technique was efficient for multiple enteric pathogens and toxin gene detection. The co-existence of antibiotic resistance with enteroinvasive E. coli toxin genes suggests an additional prognostic burden on patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.