The morphological characterization of the cornea using corneal topographers is a widespread clinical practice that is essential for the diagnosis of keratoconus. The current state of this non-invasive exploratory technique has evolved with the possibility of achieving a great number of measuring points of both anterior and posterior corneal surfaces, which is possible due to the development of new and advanced measurement devices. All these data are later used to extract a series of topographic valuation indices that permit to offer the most exact and reliable clinical diagnosis. This paper describes the technologies in which current corneal topographers are based on, being possible to define the main morphological characteristics that the keratoconus pathology produces on corneal surface. Finally, the main valuation indices, which are provided by the corneal topographers and used for the diagnosis of keratoconus, are also defined.
AimTo establish a new procedure for 3D geometric reconstruction of the human cornea to obtain a solid model that represents a personalized and in vivo morphology of both the anterior and posterior corneal surfaces. This model is later analyzed to obtain geometric variables enabling the characterization of the corneal geometry and establishing a new clinical diagnostic criterion in order to distinguish between healthy corneas and corneas with keratoconus.MethodThe method for the geometric reconstruction of the cornea consists of the following steps: capture and preprocessing of the spatial point clouds provided by the Sirius topographer that represent both anterior and posterior corneal surfaces, reconstruction of the corneal geometric surfaces and generation of the solid model. Later, geometric variables are extracted from the model obtained and statistically analyzed to detect deformations of the cornea.ResultsThe variables that achieved the best results in the diagnosis of keratoconus were anterior corneal surface area (ROC area: 0.847, p<0.000, std. error: 0.038, 95% CI: 0.777 to 0.925), posterior corneal surface area (ROC area: 0.807, p<0.000, std. error: 0.042, 95% CI: 0,726 to 0,889), anterior apex deviation (ROC area: 0.735, p<0.000, std. error: 0.053, 95% CI: 0.630 to 0.840) and posterior apex deviation (ROC area: 0.891, p<0.000, std. error: 0.039, 95% CI: 0.8146 to 0.9672).ConclusionGeometric modeling enables accurate characterization of the human cornea. Also, from a clinical point of view, the procedure described has established a new approach for the study of eye-related diseases.
Understanding the relationship between parents’ and sons’ formal employment is essential for promoting social mobility in Mexico. Using the 2011 Survey of Social Mobility in Mexico (EMOVI), this paper contributes to the literature by addressing the intergenerational mobility of employment. Findings show a strong connection between intergenerational employment choices and suggest a positive selection for workers. Individuals with parents who worked in the formal sector are more likely to be enrolled in formal work and vice versa. Also, after controlling for parent’s employment sector, schooling remains as a significant vehicle to transit to the formal sector.
Given current high market competitiveness, it is necessary to differentiate between products that perform the same function. For this objective, designer can recur to various sources of inspiration in the searching of the more attractive form during the conceptual design stage. One of these sources can be nature, which offers a large number of geometries and textures that can be used from a shape point of view to help the designer in the creative process. This work presents an agent-based approach for a design-aided tool to provide users with some ideas, beginning with simple parts/concepts, and then increasing the complexity level according to the answers offered by designer. The proposed paradigm was implemented using the JADE agent-based platform. In order to validate the platform, several product categories were offered to fifteen different users and a total of sixty design proposals were obtained with the aid of the platform. After evaluating all the proposals, twelve of the sixty designs were finally selected and modelled by a Computer-Aided Design software. The obtained results demonstrate the feasibility of using an agent-based approach to obtain an adaptive intelligent solution to the product conceptual design problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.