This paper reports a new approach in defining preventive control measures to assure transient stability relatively to one or several contingencies that may occur separately in a power system. Generation dispatch is driven not only by economic functions but also with the derivatives of the transient energy margin value; these derivatives are obtained directly from a trained Artificial Neural Network (ANN), using real time monitorable system values. Results obtained from computer simulations, for several contingencies in the CIGRE test system, confirm the validity of the developed approach.
This paper presents an artificial neural network (ANN) based approach for the definition of preventive control strategies of autonomous power systems with a large renewable power penetration. For a given operating point, a fast dynamic security evaluation for a specified wind perturbation is performed using an ANN. If insecurity is detected, new alternative stable operating points are suggested, using a hybrid ANN-optimization approach that checks several feasible possibilities, resulting from changes in power produced by diesel and wind generators, and other combinations of diesel units in operation. Results obtained from computer simulations of the real power system of Lemnos (Greece) support the validity of the developed approach.
Electrical distribution utilities have been dealing with the problem of estimation of distribution network load diagrams, either for operation studies or in forecasting models for planning purposes. Load curve assessment is essential for an efficient management of electric distribution systems. However, the only information available for most of the loads (namely LV loads) is related to monthly energy consumptions. The general procedure uses measurements in consumers to construct inference engines that predict load curves using commercial information. This paper presents a new approach for this problem, based on Kohonen maps and Artificial Neural Networks (ANN) to estimate load diagramsfor the portuguese distribution utilities. A method for estimating error bars is also proposed in order to provide a high order information about the performance of load curve estimation process. Performance attained is discussed as well as the method to achieve confidence intervals of the main predicted diagrams.
The application of artificial neural networks or other techniques in load forecasting usually outputs quality results in normal conditions. However, in real-world practice, a remarkable number of abnormalities may arise. Among them, the most common are the historical data bugs (due to SCADA or recording failure), anomalous behavior (like holidays or atypical days), sudden scale or shape changes following switching operations, and consumption habits modifications in the face of energy price amendments. Each of these items is a potential factor of forecasting performance degradation. This paper describes the procedures implemented to avoid the performance degradation under such conditions. The proposed techniques are illustrated with real data examples of current, active, and reactive power forecasting at the primary substation level.Index Terms-Load forecasting, neural networks, power distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.