Background Efforts to protect residents in nursing homes involve non-pharmaceutical interventions, testing, and vaccine. We sought to quantify the effect of testing and vaccine strategies on the attack rate, length of the epidemic, and hospitalization. Methods We developed an agent-based model to simulate the dynamics of SARS-CoV-2 transmission among resident and staff agents in a nursing home. Interactions between 172 residents and 170 staff based on data from a nursing home in Los Angeles, CA. Scenarios were simulated assuming different levels of non-pharmaceutical interventions, testing frequencies, and vaccine efficacy to reduce transmission. Results Under the hypothetical scenario of widespread SARS-CoV-2 in the community, 3-day testing frequency minimized the attack rate and the time to eradicate an outbreak. Prioritization of vaccine among staff or staff and residents minimized the cumulative number of infections and hospitalization, particularly in the scenario of high probability of an introduction. Reducing the probability of a viral introduction eased the demand on testing and vaccination rate to decrease infections and hospitalizations. Conclusions Improving frequency of testing from 7-days to 3-days minimized the number of infections and hospitalizations, despite widespread community transmission. Vaccine prioritization of staff provides the best protection strategy when the risk of viral introduction is high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.