Salmonella enterica rarely grows on healthy, undamaged plants, but its persistence is influenced by bacterial plant pathogens. The interactions between S. enterica, Xanthomonas perforans (a tomato bacterial spot pathogen), and tomato were characterized. We observed that virulent X. perforans, which establishes disease by suppressing pathogen-associated molecular pattern (PAMP)-triggered immunity that leads to effector-triggered susceptibility, created a conducive environment for persistence of S. enterica in the tomato phyllosphere, while activation of effector-triggered immunity by avirulent X. perforans resulted in a dramatic reduction in S. enterica populations. S. enterica populations persisted at ϳ10 times higher levels in leaves coinoculated with virulent X. perforans than in those where S. enterica was applied alone. In contrast, S. enterica populations were ϳ5 times smaller in leaves coinoculated with avirulent X. perforans than in leaves inoculated with S. enterica alone. Coinoculation with virulent X. perforans increased S. enterica aggregate formation; however, S. enterica was not found in mixed aggregates with X. perforans. Increased aggregate formation by S. enterica may serve as the mechanism of persistence on leaves cocolonized by virulent X. perforans. S. enterica association with stomata was altered by X. perforans; however, it did not result in appreciable populations of S. enterica in the apoplast even in the presence of large virulent X. perforans populations. Gene-for-gene resistance against X. perforans successively restricted S. enterica populations. Given the effect of this interaction, breeding for disease-resistant cultivars may be an effective strategy to limit both plant disease and S. enterica populations and, consequently, human illness.
Several pest insects of human and livestock habitations are known as vectors of Salmonella enterica; however, the role of plantfeeding insects as vectors of S. enterica to agricultural crops remains unexamined. Using a hemipteran insect pest-lettuce system, we investigated the potential for transmission and retention of S. enterica. Specifically, Macrosteles quadrilineatus and Myzus persicae insects were fed S. enterica-inoculated lettuce leaf discs or artificial liquid diets confined in Parafilm sachets to allow physical contact or exclusively oral ingestion of the pathogen, respectively. After a 24-h acquisition access period, insects were moved onto two consecutive noninoculated leaf discs or liquid diets and allowed a 24-h inoculation access period on each of the two discs or sachets. Similar proportions of individuals from both species ingested S. enterica after a 24-h acquisition access period from inoculated leaf discs, but a significantly higher proportion of M. quadrilineatus retained the pathogen internally after a 48-h inoculation access period. S. enterica was also recovered from the honeydew of both species. After a 48-h inoculation access period, bacteria were recovered from a significantly higher proportion of honeydew samples from M. quadrilineatus than from M. persicae insects. The recovery of S. enterica from leaf discs and liquid diets postfeeding demonstrated that both species of insects were capable of transmitting the bacteria in ways that are not limited to mechanical transmission. Overall, these results suggest that phytophagous insects may serve as potential vectors of S. enterica in association with plants.
Recently, most foodborne illness outbreaks of salmonellosis have been caused by consumption of contaminated fresh produce. Yet, the mechanisms that allow the human pathogen Salmonella enterica to contaminate and grow in plant environments remain poorly described. We examined the effect of feeding by phytophagous insects on survival of S. enterica on lettuce. Larger S. enterica populations were found on leaves infested with Macrosteles quadrilineatus. In contrast, pathogen populations among plants exposed to Frankliniella occidentalis or Myzus persicae were similar to those without insects. However, on plants infested with F. occidentalis, areas of the infested leaf with feeding damage sustained higher S. enterica populations than areas without damage. The spatial distribution of S. enterica cells on leaves infested with F. occidentalis may be altered resulting in higher populations in feeding lesions or survival may be different across a leaf dependent on local damage. Results suggest the possibility of some specificity with select insects and the persistence of S. enterica. Additionally, we demonstrated the potential for phytophagous insects to become contaminated with S. enterica from contaminated plant material. S. enterica was detected in approximately 50% of all M. quadrilineatus, F. occidentalis, and M. persicae after 24 h exposure to contaminated leaves. Particularly, 17% of F. occidentalis, the smallest of the insects tested, harbored more than 102 CFU/F. occidentalis. Our results show that phytophagous insects may influence the population dynamics of S. enterica in agricultural crops. This study provides evidence of a human bacterial pathogen interacting with phytophagous insect during plant infestation.
Soto-Arias, J. P., and Munkvold, G. P. 2011. Effects of virus infection on susceptibility of soybean plants to Phomopsis longicolla. Plant Dis. 95:530-536.Infection of soybean by Bean pod mottle virus (BPMV) or Soybean mosaic virus (SMV) has been reported to increase susceptibility to seed infection by Phomopsis spp., but the mechanism is unclear. Effects of virus infection on susceptibility to Photnopsis longicolla were studied in greenhouse experiments. Three soybean cultivars were inoculated with BPMV at growth stage V2 to V3, and with P. longicolla at R3, R5, or R7. Inoculation with BPMV did not increase the incidence of stem infection by P. ¡ongicolla. but it increased susceptibility to seed infection of cultivars Spansoy 201 at R5, and Pioneer brand 92M02 at R3, R5, and R7. A delay in maturity was observed only in 92M02. Thus, BPMV predisposed soybean plants to seed infection by P. longicolla. but this predisposition was not due solely to prolonging maturation. In separate experiments, two soybean cultivars were inoculated with SMV (V2 to V3) and P. longicolla (R3 and R5). Inoculation with SMV did not increase the incidence of stem or seed infection by P. tottgicolla. The SMV-Phoiiiop.\i.\ spp. relationship may be cultivar and strain dependent. Results suggest that the risk of soybean seed infection by P. longicolla may be higher when BPMV vector populations are high and BPMV infection is widespread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.