The pandemic declared by the World Health Organization due to the SARS-CoV-2 virus (COVID-19) awakened us to a reality that most of us were previously unaware of—isolation, confinement and the massive use of information and communication technologies, as well as increased knowledge of the difficulties and limitations of their use. This article focuses on the rapid implementation of low-cost technologies, which allow us to answer a fundamental question: how can near real-time monitoring and follow-up of the elderly and their health conditions, as well as their homes, especially for those living in isolated and remote areas, be provided within their care and protect them from risky events? The system proposed here as a proof of concept uses low-cost devices for communication and data processing, supported by Long-Range (LoRa) technology and connection to The Things Network, incorporating various sensors, both personal and in the residence, allowing family members, neighbors and authorized entities, including security forces, to have access to the health condition of system users and the habitability of their homes, as well as their urgent needs, thus evidencing that it is possible, using low-cost systems, to implement sensor networks for monitoring the elderly using the LoRa gateway and other support infrastructures.
Background: The evolutionary forces that determine the arrangement of synonymous codons within open reading frames and fine tune mRNA translation efficiency are not yet understood. In order to tackle this question we have carried out a large scale study of codon-triplet contexts in 11 fungal species to unravel associations or relationships between codons present at the ribosome A-, P-and E-sites during each decoding cycle.
Connected health is expected to introduce an improvement in providing healthcare and doctor-patient communication while at the same time reducing cost. Connected health would introduce an even more significant gap between healthcare quality for urban areas with physical proximity and better communication to providers and the portion of rural areas with numerous connectivity issues. We identify these challenges using user scenarios and propose LoRa based architecture for addressing these challenges. We focus on the energy management of battery-powered, affordable IoT devices for long-term operation, providing important information about the care receivers’ well-being. Using an external ultra-low-power timer, we extended the battery life in the order of tens of times, compared to relying on low power modes of the microcontroller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.