Control cables transfer force between two separate locations by a flexible mean, and hence, they are important in the automotive industry and many others; their terminals interact with both moving and moved mechanisms, so they must be strong. Cable terminals are commonly made of ZAMAK and are created by injection molding. However, such a production method requires leaving extra material to allow the correct molding, also known as sprues, which are removed later in the process. In this case, the sprues were separating from the terminals in an uncontrolled way. In this work, the cause of sprues separating prematurely from the terminals in a production line is addressed. The whole process was analyzed, and each possible solution was evaluated using process improvement techniques and the Finite Element Method, leading to the best solutions. Molds, mold structures, and auxiliary equipment were improved, resulting in a minimally invasive intervention and remaining compatible with other equipment. Cost analyses were done, indicating an investment return in less than a year. The modification led to a reduction of 62.6% in the sprue mass, while porosity was reduced by 10.2% and 55.9%, corresponding to two terminal models. In conclusion, the interventions fulfilled the requirements and improved the operation of the line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.