The contribution of the aldehyde composition of wine spirit to the color changes in Port red wine was studied in model solutions. Malvidin 3-glucoside was shown to be very reactive towards catechin in the presence of different aldehydes: acetaldehyde, isovaleraldehyde, benzaldehyde, propionaldehyde, isobutyraldehyde, formaldehyde, and 2-methylbutyraldehyde. LC/MS data confirmed the formation of oligomeric pigments resulting from the reaction between the anthocyanin and the flavanol (colored products) and between 2 flavanol units (colorless products) mediated by each aldehyde assayed. The UV-visible spectra of the colored pigments showed a l max bathochromically shifted relatively to the l max of original anthocyanins. All samples revealed a "blueing" and "darkening" color effects using the CIELAB system.
The function of aspartic proteinases (EC 3.4.23) present in flowers of Cynara species is still unknown. Cardosin A, as a highly abundant aspartic proteinase from Cynara cardunculus L., a relative of the artichoke, is synthesised as a zymogen and subsequently undergoes proteolytic processing, yielding the mature and active enzyme. Here we report the study of the expression and localization of cardosin A, as a first approach to address the question of its physiological relevance. A polyclonal antibody specific for cardosin A was raised against a synthetic peptide corresponding to an amino acid sequence of the enzyme. This antibody was used to study the organ-specific, tissue-specific and subcellular localization of cardosin A by immunoblotting, tissue printing and immunogold electron microscopy. The results showed that expression of cardosin A is highly restricted to the pistils, and that the enzyme accumulates mainly in protein storage vacuoles of the stigmatic papillae. Cardosin A is also present, although much less abundantly, in the vacuoles of the cells of the epidermis of the style. In view of these results, the possible physiological roles of cardosin A are discussed, namely an involvement in defense mechanisms or pollen-pistil interaction, as well as in flower senescence.
SUMMARYSeveral vacuolar sorting determinants (VSDs) have been described for protein trafficking to the vacuoles in plant cells. Because of the variety in plant models, cell types and experimental approaches used to decipher vacuolar targeting processes, it is not clear whether the three well-known groups of VSDs identified so far exhaust all the targeting mechanisms, nor if they reflect certain protein types or families. The vacuolar targeting mechanisms of the aspartic proteinases family, for instance, are not yet fully understood. In previous studies, cardosin A has proven to be a good reporter for studying the vacuolar sorting of aspartic proteinases. We therefore propose to explore the roles of two different cardosin A domains, common to several aspartic proteinases [i.e. the plant-specific insert (PSI) and the C-terminal peptide VGFAEAA] in vacuolar sorting. Several truncated versions of the protein conjugated with fluorescent protein were made, with and without these putative sorting determinants. These domains were also tested independently, for their ability to sort other proteins, rather than cardosin A, to the vacuole. Fluorescent chimaeras were tracked in vivo, by confocal laser scanning microscopy, in Nicotiana tabacum cells. Results demonstrate that either the PSI or the C terminal was necessary and sufficient to direct fluorescent proteins to the vacuole, confirming that they are indeed vacuolar sorting determinants. Further analysis using blockage experiments of the secretory pathway revealed that these two VSDs mediate two different trafficking pathways.
Cardosin A is the major vacuolar aspartic proteinase (APs) (E.C.3.4.23) in pistils of Cynara cardunculus L. (cardoon). Plant APs carry a unique domain, the plant-specific-insert (PSI), and a pro-segment which are separated from the catalytic domains during maturation but the sequence and location of processing steps for cardosins have not been established. Here transient expression in tobacco and inducible expression in Arabidopsis indicate that processing of cardosin A is conserved in heterologous species. Pulse chase analysis in tobacco protoplasts indicated that cleavage at the carboxy-terminus of the PSI could generate a short-lived 50 kDa intermediate which was converted to a more stable 35 kDa intermediate by removal of the PSI. Processing intermediates detected immunologically in tobacco leaves and Arabidopsis seedlings confirmed that cleavage at the amino-terminus of the PSI either preceded or followed quickly after cleavage at its carboxy-terminus. Thus removal of PSI preceded the loss of the prosegment in contrast to the well-characterised barley AP, phytepsin. PreprocardosinA acquired a complex glycan and its processing was inhibited by brefeldin A and dominant-inhibitory AtSAR1 or AtRAB-D2(a )mutants indicating that it was transported via the Golgi and that processing followed ER export. The 35 kDa intermediate was present in the cell wall and protoplast culture medium as well as the vacuole but the 31 kDa mature subunit, lacking the amino-terminal prosegment, was detected only in the vacuole. Thus maturation appears to occur only after sorting from the trans-Golgi to the vacuole. Processing or transport of cardosin A was apparently slower in tobacco protoplasts than in whole cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.