The stability of velocity and pressure mixed finite-element approximations in general meshes of the hydrostatic Stokes problem is studied, where two "inf-sup" conditions appear associated to the two constraints of the problem; namely incompressibility and hydrostatic pressure. Since these two constraints have different properties, it is not easy to choose finite element spaces satisfying both. From the analytical point of view, two main results are established; the stability of an anisotropic approximation of the velocity (using different spaces for horizontal and vertical velocities) with piecewise constant pressures, and the unstability of standard (isotropic) approximations which are stable for the Stokes problem, like the mini-element or the Taylor-Hood element. Moreover, we give some numerical simulations, which agree with the previous analytical results and allow us to conjecture the stability of some anisotropic approximations of the velocity with continuous piecewise linear pressure in unstructured meshes.
This paper studies the stability of velocity-pressure mixed approximations of the Stokes problem when different finite element (FE) spaces for each component of the velocity field are considered. We consider some new combinations of continuous FE reducing the number of degrees of freedom in some velocity components. Although the resulting FE combinations are not stable in general, by using the Stenberg's macro-element technique, we show their stability in a wide family of meshes (namely, in uniformly unstructured meshes). Moreover, a post-processing is given in order to convert any mesh family in an uniformly unstructured mesh family. Finally, some 2D and 3D numerical simulations are provided agree with the previous analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.