the radiomics characterization approach presented great potential to be used in a computational model to aid lung cancer histopathological subtype diagnosis as a "virtual biopsy" and metastatic prediction for therapy decision support without the necessity of a whole-body imaging scanning.
Lung cancer is the leading cause of cancer-related deaths in the world, and one of its manifestations occurs with the appearance of pulmonary nodules. The classification of pulmonary nodules may be a complex task to specialists due to temporal, subjective, and qualitative aspects. Therefore, it is important to integrate computational tools to the early pulmonary nodule classification process, since they have the potential to characterize objectively and quantitatively the lesions. In this context, the goal of this work is to perform the classification of pulmonary nodules based on image features of texture and margin sharpness. Computed tomography scans were obtained from a publicly available image database. Texture attributes were extracted from a co-occurrence matrix obtained from the nodule volume. Margin sharpness attributes were extracted from perpendicular lines drawn over the borders on all nodule slices. Feature selection was performed by different algorithms. Classification was performed by several machine learning classifiers and assessed by the area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy. Highest classification performance was obtained by a random forest algorithm with all 48 extracted features. However, a decision tree using only two selected features obtained statistically equivalent performance on sensitivity and specificity.
Pneumonia is one of the leading causes of childhood mortality worldwide. Chest x-ray (CXR) can aid the diagnosis of pneumonia, but in the case of low contrast images, it is important to include computational tools to aid specialists. Deep learning is an alternative because it can identify patterns automatically, even in low-resolution images. We propose herein a convolutional neural network (CNN) architecture with different training strategies towards detecting pneumonia on CXRs and distinguishing its subforms of bacteria and virus. We also evaluated different image pre-processing methods to improve the classification. This study used CXRs from pediatric patients from a public pneumonia CXR dataset. The pre-processing methods evaluated were image cropping and histogram equalization. To classify the images, we adopted the VGG16 CNN and replaced its fully-connected layers with a customized multilayer perceptron. With this architecture, we proposed and evaluated four different training strategies: original CXR image (baseline), chest-cavity-cropped image (A), and histogram-equalized segmented image (B). The last strategy method (C) implemented is based on ensemble between strategies A and B. The performance was assessed by the area under the ROC curve (AUC) with 95% confidence interval (CI), accuracy, sensitivity, specificity, and F1-score. The ensemble model C yielded the highest performances: AUC of 0.97 (CI: 0.96-0.99) to classify pneumonia vs. normal, and AUC of 0.91 (CI: 0.88-0.94) to classify bacterial vs. viral cases. All models that used pre-processed images showed higher AUC than baseline, which used the original CXR image. Image cropping and histogram equalization reduced irrelevant information from the exam, enhanced contrast, and was able to identify fine CXR texture details. The proposed ensemble model increased the representation of inflammatory patterns from bacteria and viruses with few epochs to train the deep CNNs. Clinical relevance-Deep learning can identify complex radiographic patterns in low contrast images due to pneumonia and distinguish its subforms of bacteria and virus. The correlation of imaging with lab results could accelerate the adoption of complementary exams to confirm the disease's cause.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.