A ocorrência de microfilárias circulantes de Wuchereria bancrofti foi pesquisada em 304 gestantes da Unidade Mista Prof. Barros Lima e do Hospital das Clínicas da Universidade Federal de Pernambuco pelo Centro de Pesquisas Aggeu Magalhães. A microfilaremia materna foi investigada pela filtração de sangue venoso, sendo encontrados 13 casos positivos (4,2%). A pesquisa de microfilárias no sangue do cordão umbilical de suas crianças foi negativa (6/13), assim como no sangue periférico destas até 72 horas pós-parto e com 6 meses de vida. As amostras de leite coletadas destas mães também não apresentaram microfilárias. Os autores sugerem que a ocorrência de lesões placentárias seja um possível fator envolvido na passagem transplacentária de microfilárias, e que a exposição in utero a microfilárias e/ou antígeno filarial possam influenciar a resposta a uma infecção filarial adquirida posteriormente, sendo importante o acompanhamento clínico e laboratorial de crianças expostas previamente a antígenos filariais em períodos precoces do desenvolvimento humano.
The theory of graph signal processing has been established with the purpose of generalizing tools from classical digital signal processing to the cases where the signal domain can be modeled by an arbitrary graph. In this context, the present paper introduces the notion of fractional shift of signals on graphs, which is related to considering a non-integer power of the graph adjacency matrix. Among the results we derive throughout this work, we prove that the referred fractional operator can be implemented as a linear and shift-invariant graph filter for any graph and verify its convergence to the classical fractional delay when a directed ring graph is considered. By means of a real-world example, we show that, using the proposed operator, we can obtain graph filters that approximate an ideal filter better than those designed using the ordinary adjacency matrix. An additional example dealing with noise removal from graph signals illustrates the gain provided by the mentioned filter design strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.