Polyvinyl Alcohol (PVA) hydrogel plugs were implanted in artificial osteochondral defects on the trochlear groove of rat knees. After 0, 3, 6, 12, and 24 weeks of followup, samples containing the implants were mechanically evaluated by creep indentation test, chemically, and histologically by optical microscopy. The mechanical test pointed towards an increase of the implant creep modulus and the chemical analysis exhibited an increasing concentration of calcium and phosphorus within the implants over time. Optical microscopy showed no foreign body reaction and revealed formation, differentiation, and maintenance of new tissue at the defect/implant interface. The absence of implant wear indicated that the natural articular lubrication process was not disturbed by the implant. The performance of the irradiated and acetalized PVA was considered satisfactory for the proposed application.
TX 75083-3836, U.S.A., fax 01-972-952-9435.
AbstractMore than 90% of Brazilian oil and gas reserves lie in offshore fields and over 60% of the total reserves are located in deep and ultradeep waters. Some of the important technical problems associated with deep and ultradeep water drilling involve: i) low formation fracture gradients; ii) long choke lines; and iii) low temperatures at the mud line. The well control planning and strategy for drilling exploratory and development wells in those fields should address those technical drawbacks in order to achieve the safety requirements in a cost-effective scenario.The better understanding of gas solubility in synthetic based drilling fluids plays a fundamental role in terms of preventive (kick detection) and corrective (kick circulation out of the hole) well control practices.The present work involves PVT characterization of two organic liquids (n-paraffin and ester) currently applied in drilling fluid systems for deep and ultradeep water drilling, in Campos Basin (Rio de Janeiro, Brazil). The measurement of thermodynamical properties of the methane-liquid mixtures, such as bubble point pressure, solubility, formation volume factor of oil, formation volume factor of gas and liquid density, were performed for 158 o F and 194 o F temperatures. The measurements were conducted in two different apparatuses: an Hg system and an Hg-free PVT system. The results showed that the correct accounting of formation gas solubility in downhole conditions and during the kick circulation is a very important issue for safely drill deep and ultradeep water wells.
The objective of this study was to compare the Locking Compression Plate (LCP) with the more cost-effective straight-dynamic compression plate (DCP) and wave-DCPs by testing in vitro the effects of plate stiffness on different types of diaphyseal femur fractures (A, B, and C, according to AO classification). The bending structural stiffness of each plate was obtained from four-point bending tests according to ASTM F382-99(2008). The plate systems were tested by applying compression/bending in different osteosynthesis simulation models using wooden rods to simulate the fractured bone fragments. Kruskal-Wallis test showed no significant difference in the bending structural stiffness between the three plate models. Rank-transformed two-way ANOVA showed significant influence of plate type, fracture type, and interaction plate versus fracture on the stiffness of the montages. The straight-DCP produced the most stable model for types B and C fractures, which makes its use advantageous for complex nonosteoporotic fractures that require minimizing focal mobility, whereas no difference was found for type A fracture. Our results indicated that DCPs, in straight or wave form, can provide adequate biomechanical properties for fixing diaphyseal femoral fractures in cases where more modern osteosynthesis systems are cost restrictive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.