This paper deals with the calorimetric analysis of deformation processes in natural rubber.Infrared thermography is first used to measure the temperature evolution of specimens under quasi-static uniaxial loading at ambient temperature (see Part 1). Then the heat sources produced or absorbed by the material due to deformation processes are deduced from the temperature variations by using the heat diffusion equation. Different main results are obtained from cyclic and relaxation tests. First, no mechanical dissipation (intrinsic dissipation) is detected during the material deformation. Second, strain-induced crystallization leads to significant heat production, whereas the melting of crystallites absorbs the same heat quantity with different kinetics. This difference in kinetics explains the mechanical hysteresis.Finally, relaxation tests show that crystallite melting does not systematically occur instantaneously.
International audienceAbstract This paper investigates the mechanisms of deformation in rubber, especially stress-induced crystallization, using infrared thermography. Temperature variations are measured during cyclic uniaxial mechanical tests at ambient temperature. Results show that natural rubber mainly exhibits entropic behaviour: the material produces (resp. absorbs) heat during loading (resp. unloading). The crystallization of the polymer chains under tension leads to a temperature increase of the order of several degrees Celsius. If crystallization and crystallite melting occur over one mechanical cycle, a hysteresis loop is observed in terms of the strain-stress relationship. Stress relaxation tests show that the thermal signatures of crystallization and of crystallite melting are different. Indeed, if the strain is maintained fixed during loading, the temperature continues to increase for a few seconds before returning to the ambient temperature. This reveals that crystallization continues during relaxation. On the contrary, if the strain is maintained fixed during unloading, the specimen returns instantaneously to the ambient temperature
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.