The purpose of this work was to assess the effect of oligomycin on the mitochondrial membrane permeability transition. The antibiotic was found to strengthen cyclosporin A (CSA)-induced protection of non-specific permeability, which is triggered by a matrix Ca2+ load in the absence of ADP. Oligomycin also reinforced the protective effect of CSA on carboxyatractyloside-induced pore opening in the absence of ADP, but failed to do so in mitochondria incubated under anaerobic conditions or after addition of CCCP. Analyzing the efflux of matrix Ca2+, we found that mitochondrial swelling and the collapse of the transmembrane electric gradient coincided with membrane leakage. The effects of the antibiotic were observed in phosphate-containing media but not in the presence of acetate. Furthermore, N-ethylmaleimide hindered the protective effect of oligomycin-CSA. In addition, the matrix phosphate concentration increased concurrently with a diminution in the matrix-free fraction of Ca2+. We concluded that oligomycin increases phosphate uptake by stimulating the phosphate-/OH- exchange reaction.
The role of the adenine nucleotide translocase on Ca2+ homeostasis in mitochondria from brown adipose tissue was examined. It was found that in mitochondria incubated with 50 microM Ca2+, ADP was not needed to retain the cation, but it was required for strengthening the inhibitory effect of cyclosporin on membrane permeability transition as induced by menadione. In addition, carboxyatractyloside was unable to promote matrix Ca2+ release, even though it inhibits the ADP exchange reaction. However, when the Ca2+ concentration was increased to 150 microM carboxyatractyloside did induce Ca2+ release, and ADP favored Ca2+ retention. Determination of cardiolipin content in the inner membrane vesicles showed a greater concentration in brown adipose tissue mitochondria than that found in kidney mitochondria. It suggested that the failure of the adenine nucleotide translocase to influence membrane permeability transition depends on the lipid composition of the inner membrane.
The role of inorganic phosphate as inhibitor of mitochondrial membrane permeability transition was studied. It is shown that in mitochondria containing a high phosphate concentration, i.e., 68 nmo/mg, Ca2+ did not activate the pore opening. Conversely, at lower levels of matrix phosphate, i.e., 38 nmol/mg, Ca2+ was able to induce subsequent pore opening. The inhibitory effect of phosphate was apparent in sucrose-based media, but it was not achieved in KCI media. The matrix free Ca2+ concentration and matrix pH were lowered by phosphate, but they were always higher in K+-media. In the absence of ADP, phosphate strengthened the inhibitory effect of cyclosporin A on carboxyatractyloside-induced Ca2+ efflux. Acetate was unable to replace phosphate in the induction of the aforementioned effects. It is concluded that phosphate preserves selective membrane permeability by diminishing the matrix free Ca2+ concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.