Long-lived, high-angle fault systems constitute high-permeability zones that can localize the upward flow of hydrothermal fluids and magma throughout the upper crust. Intersections of these types of structures can develop complex interference patterns, which constitute volumes of damaged rock (networks of small-scale faults and fractures) where permeability may be significantly enhanced. This is relevant for understanding regional-scale structural controls on the emplacement of hydrothermal mineral deposits and volcanic centers, and also on the distribution of areas of active upper-crustal seismicity. In the high Andes of central Chile, regional-scale geophysical (magnetic, gravimetric, seismic) and structural datasets demonstrate that the architecture of this Andean segment is defined by NW- and NE-striking fault systems, oblique to the N-S trend of the magmatic arc. Fault systems with the same orientations are well developed in the basement of the Andes. The intersections of conjugate arc-oblique faults constitute the site of emplacement of Neogene intrusive complexes and giant porphyry Cu-Mo deposits, and define the location of major clusters of upper-crustal earthquakes and active volcanic centers, suggesting that these fault systems are still being reactivated under the current stress regime. A proper identification of one-dimensional, lithospheric-scale high-permeability zones located at the intersections of high-angle, arc-transverse fault systems could be the key to understanding problems such as the structural controls on magmatic and hydrothermal activity and the patterns of upper-crustal seismicity in the high Andes and similar orogenic belts
<p>Parametric techniques are developing as an agile tool in both civil engineering and architectural design. What is especially powerful is the ability of these softwares to relate and iterate through multiple options with minimal effort. The tools that combine a parametric definition of the bridge with a 3D graphic and a FEM model gives the designer the opportunity to analyse instantaneously, the effect in the variation of the variable parameters in terms of visual appearance as well as structural behaviour simultaneously. Therefore parametric design is a valuable tool in the conceptual design phase where the geometric decisions made are the most structurally and architecturally impactful.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.