Summary
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by breakdown of tolerance to nucleic acids and highly diverse clinical manifestations. To assess its molecular heterogeneity, we longitudinally profiled the blood transcriptome of 158 pediatric patients. Using mixed models accounting for repeated measurements, demographics, treatment, disease activity (DA) and nephritis class, we confirmed a prevalent IFN signature and identified a plasmablast signature as the most robust biomarker of DA. We detected gradual enrichment of neutrophil transcripts during progression to active nephritis, and distinct signatures in response to treatment in different nephritis subclasses. Importantly, personalized immunomonitoring uncovered individual correlates of disease activity that enabled patient stratification into seven groups, which were supported by patient genotypes. Our study uncovers the molecular heterogeneity of SLE and provides an explanation for the failure of clinical trials. This approach may improve trial design and implementation of tailored therapies in genetically and clinically complex autoimmune diseases.
RationaleGlobally there are approximately 9 million new active tuberculosis cases and 1.4 million deaths annually. Effective antituberculosis treatment monitoring is difficult as there are no existing biomarkers of poor adherence or inadequate treatment earlier than 2 months after treatment initiation. Inadequate treatment leads to worsening disease, disease transmission and drug resistance.ObjectivesTo determine if blood transcriptional signatures change in response to antituberculosis treatment and could act as early biomarkers of a successful response.MethodsBlood transcriptional profiles of untreated active tuberculosis patients in South Africa were analysed before, during (2 weeks and 2 months), at the end of (6 months) and after (12 months) antituberculosis treatment, and compared to individuals with latent tuberculosis. An active-tuberculosis transcriptional signature and a specific treatment-response transcriptional signature were derived. The specific treatment response transcriptional signature was tested in two independent cohorts. Two quantitative scoring algorithms were applied to measure the changes in the transcriptional response. The most significantly represented pathways were determined using Ingenuity Pathway Analysis.ResultsAn active tuberculosis 664-transcript signature and a treatment specific 320-transcript signature significantly diminished after 2 weeks of treatment in all cohorts, and continued to diminish until 6 months. The transcriptional response to treatment could be individually measured in each patient.ConclusionsSignificant changes in the transcriptional signatures measured by blood tests were readily detectable just 2 weeks after treatment initiation. These findings suggest that blood transcriptional signatures could be used as early surrogate biomarkers of successful treatment response.
Staphylococcus aureus infections are associated with diverse clinical manifestations leading to significant morbidity and mortality. To define the role of the host response in the clinical manifestations of the disease, we characterized whole blood transcriptional profiles of children hospitalized with community-acquired S. aureus infection and phenotyped the bacterial strains isolated. The overall transcriptional response to S. aureus infection was characterized by over-expression of innate immunity and hematopoiesis related genes and under-expression of genes related to adaptive immunity. We assessed individual profiles using modular fingerprints combined with the molecular distance to health (MDTH), a numerical score of transcriptional perturbation as compared to healthy controls. We observed significant heterogeneity in the host signatures and MDTH, as they were influenced by the type of clinical presentation, the extent of bacterial dissemination, and time of blood sampling in the course of the infection, but not by the bacterial isolate. System analysis approaches provide a new understanding of disease pathogenesis and the relation/interaction between host response and clinical disease manifestations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.