With the discovery of molecular complexes exhibiting slow relaxation of the magnetization and magnetic hysteresis at low temperature, research activity in the field of molecular magnetism based on coordination compounds has experienced spectacular growth. [1] These nanomagnets, called single-molecule magnets (SMMs), [1][2][3] straddle the quantum/ classical interface showing quantum effects, such as quantum tunneling of the magnetization and quantum phase interference, and have potential applications in molecular spintronics, ultra-high density magnetic information storage, and quantum computing at the molecular level. [3] The motivation of much of this research activity has been provided by the prospect of integrating SMMs into nanosized devices. The origin of the SMM behavior is the existence of an energy barrier that prevents reversal of the molecular magnetization, [1] although the currently observed energy barriers are (relatively) low and therefore SMMs act as magnets only at very low temperature. To increase the height of the energy barrier and therefore to improve the SMM properties, systems with large spin-ground states and/or with large magnetic anisotropy are required. The early examples of SMMs were clusters of transition metal ions, [2] but recently mixed 3d/4f metal aggregates, [4] low-nuclearity 4f metal complexes, [5] and even mononuclear complexes (called single-ion magnets, SIMs) of lanthanide, [6] actinide, [7] and transition-metal ions [8] have been reported to exhibit slow relaxation of the magnetization.It should be noted that for integer-spin systems with D < 0 fast quantum tunneling of the magnetization (QTM) through the mixing of AE Ms levels may suppress the observation of slow magnetic relaxation through a thermally activated mechanism. QTM is promoted by transverse zero-field splitting (E), hyperfine interactions, and/or dipolar interactions. [1] The application of a small direct current (dc) field, stabilizing the negative Ms levels with regard to the positive ones, may remove the degeneracy of the AE Ms levels on either side of the energy barrier, tilting the system out of resonance and, on occasion, enabling the thermally activated mechanism. For non-integer spin systems with D < 0, the mixing of the degenerate ground state AE Ms levels through transverse anisotropy (E) is forbidden, thus favoring observation of the thermally activated relaxation process. [9] This situation, together with the fact that mononuclear species can exhibit larger anisotropies than their multinuclear counterparts (the
A mononuclear Dy(III) complex with a non-Schiff base compartmental ligand has been prepared and characterised by X-ray crystallography and ac magnetic susceptibility measurements. The complex exhibits SIM behaviour induced by dilution and/or magnetic field with two thermally activated relaxation processes.
Seven acetate-diphenoxo triply bridged M(II)-Ln(III) complexes (M(II) = Ni(II) and Ln(III) = Gd, Tb, Ho, Er, and Y; M(II) = Zn(II) and Ln(III) = Ho(III) and Er(III)) of formula [M(μ-L)(μ-OAc)Ln(NO(3))(2)], one nitrate-diphenoxo triply bridged Ni(II)-Tb(III) complex, [Ni(μ-L)(μ-NO(3))Tb(NO(3))(2)]·2CH(3)OH, and two diphenoxo doubly bridged Ni(II)-Ln(III) complexes (Ln(III) = Eu, Gd) of formula [Ni(H(2)O)(μ-L)Ln(NO(3))(3)]·2CH(3)OH have been prepared in one pot reaction from the compartmental ligand N,N',N"-trimethyl-N,N"-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H(2)L). Moreover, Ni(II)-Ln(III) complexes bearing benzoate or 9-anthracenecarboxylate bridging groups of formula [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN have also been successfully synthesized. In acetate-diphenoxo triply bridged complexes, the acetate bridging group forces the structure to be folded with an average hinge angle in the M(μ-O(2))Ln bridging fragment of ~22°, whereas nitrate-diphenoxo doubly bridged complexes and diphenoxo-doubly bridged complexes exhibit more planar structures with hinge angles of ~13° and ~2°, respectively. All Ni(II)-Ln(III) complexes exhibit ferromagnetic interactions between Ni(II) and Ln(III) ions and, in the case of the Gd(III) complexes, the J(NiGd) coupling increases weakly but significantly with the planarity of the M-(O)(2)-Gd bridging fragment and with the increase of the Ni-O-Gd angle. Density functional theory (DFT) theoretical calculations on the Ni(II)Gd(III) complexes and model compounds support these magneto-structural correlations as well as the experimental J(NiGd) values, which were found to be ~1.38 and ~2.1 cm(-1) for the folded [Ni(μ-L)(μ-OAc)Gd(NO(3))(2)] and planar [Ni(H(2)O)(μ-L)Gd(NO(3))(3)]·2CH(3)OH complexes, respectively. The Ni(II)Dy(III) complexes exhibit slow relaxation of the magnetization with Δ/k(B) energy barriers under 1000 Oe applied magnetic fields of 9.2 and 10.1 K for [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN, respectively.
Two novel trinuclear complexes [ZnCl(μ-L)Ln(μ-L)ClZn][ZnCl3 (CH3 OH)]⋅3 CH3 OH (Ln(III) =Dy (1) and Er (2)) have been prepared from the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromo-benzyl)ethylenediamine (H2 L). X-ray studies reveal that Ln(III) ions are coordinated by two [ZnCl(L)](-) units through the phenoxo and aldehyde groups, giving rise to a LnO8 coordination sphere with square-antiprism geometry and strong easy-axis anisotropy of the ground state. Ab initio CASSCF+RASSI calculations carried out on 1 confirm that the ground state is an almost pure MJ =±15/2 Kramers doublet with a marked axial anisotropy, the magnetic moment is roughly collinear with the shortest DyO distances. This orientation of the local magnetic moment of the Dy(III) ion in 1 is adopted to reduce the electronic repulsion between the oblate electron shape of the MJ =±15/2 Kramers doublet and the phenoxo-oxygen donor atoms involved in the shortest DyO bonds. CASSCF+RASSI calculations also show that the ground and first excited states of the Dy(III) ion are separated by 129 cm(-1) . As expected for this large energy gap, compound 1 exhibits, in a zero direct-current field, thermally activated slow relaxation of the magnetization with a large Ueff =140 K. The isostructural Zn-Er-Zn species does not present significant SMM behavior as expected for the prolate electron-density distribution of the Er(III) ion leading to an easy-plane anisotropy of the ground doublet state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.