Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder characterized by progressive cerebellar ataxia associated with macular degeneration. We recently described one of the largest series of patients with SCA7 that originated from a founder effect in a Mexican population, which allowed us to perform herein the first comprehensive clinical, neurophysiological, and genetic characterization of Mexican patients with SCA7. In this study, 50 patients, categorized into adult or early phenotype, were clinically assessed using standard neurological exams and genotyped using fluorescent PCR and capillary electrophoresis. Patients with SCA7 exhibited the classical phenotype of the disease characterized by cerebellar ataxia and visual loss; however, we reported, for the first time, frontal-executive disorders and altered sensory-motor peripheral neuropathy in these patients. Semiquantitative analysis of ataxia-associated symptoms was performed using Scale for the Assessment and Rating of Ataxia (SARA) and the Brief Ataxia Rating Scale (BARS) scores, while extracerebellar features were measured employing the Inventory of Non-ataxia Symptoms (INAS) scale. Ataxia rating scales confirmed the critical role size of cytosine-adenine-guanine (CAG) repeat size on age at onset and disease severity, while analysis of CAG repeat instability showed that paternal rather than maternal transmission led to greater instability.
Background: Autosomal dominant spinocerebellar ataxias (SCA) are a group of inherited neurodegenerative disorders that typically show peripheral neuropathy. SCA7 is one of the rarest forms of SCA (<1/100,000 individuals). However, the disease shows a prevalence of ∼800/100,000 inhabitants in certain regions of Mexico. This low global prevalence may explain, at least in part, the isolated anecdotal and limited clinical data regarding peripheral neuropathy in SCA7 patients. Aim: To assess sensory and motor peripheral nerve action potentials in an SCA7 patients group and in healthy volunteers, and subsequently correlate the electrophysiological findings with clinical and genetic features. Materials and Methods: We enrolled in our study, 13 symptomatic SCA7 patients with a confirmed molecular and clinical diagnosis, and 19 healthy volunteers as the control group. Nerve conduction studies were carried out using standard electromyography recording methods. The sensory and motor latency, amplitude and conduction velocity were recorded in both experimental groups and analyzed using the Student's t-test. Results: SCA7 patients showed a significant prolongation of sensory nerve conduction latencies, as well as a decrease in sensory amplitudes. Decreases in motor amplitudes and peroneal conduction velocity were also observed. Finally, we found an association between CAG repeats and the severity of cerebellar and non-cerebellar symptoms with electrophysiological signs of demyelinization. Discussion: Our results reveal the existence of a critical sensorimotor peripheral neuropathy in SCA7 patients. Moreover, we show that using sensitive electrophysiological tools to evaluate nerve conduction can improve the diagnosis and design of therapeutic options based on pharmacological and rehabilitative strategies. Conclusion: These findings demonstrate that SCA7 is a disease that globally affects the peripheral nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.