In the present work, the performance of Ag/ZnO/CoFe2O4 magnetic photocatalysts in the photocatalytic degradation of Ibuprofen (IBP) was evaluated. This study considered the use of pure Ag/ZnO (5% Ag) and also use the Ag/ZnO/CoFe2O4 magnetic catalysts containing different amounts (5, 10 and 15% wt) of cobalt ferrite (CoFe2O4). The catalysts were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and photoacoustic Spectroscopy. To carried the photocatalytic degradation reaction, different concentrations of the ibuprofen contaminant solution (10, 20 and 30 ppm) and different concentrations of photocatalyst were tested (0.3 gL−1, 0.5 gL−1 and 1.0 gL−1). The reaction parameters studied were: IBP concentration, catalyst concentration, adsorption and photolysis, influence of the matrix, radiation source (solar and artificial) and the effect of organic additive. At the end of the photocatalytic tests, the best operation conditions were defined. Considering the obtained results of degradation efficiency and magnetic separation, the optimal parameters selected to proceed with the other tests of the study were: ibuprofen solution concentration 10 ppm, Ag/ZnO/CoFe2O4(5%) catalyst at a concentration of 0.3 g L−1 and pH 4.5 of the reaction medium. The results indicated the feasibility of magnetic separation of the synthesized catalysts. A long duration test indicated that the catalyst exhibits stability throughout the degradation reaction, as more than 80% of ibuprofen was degraded after 300 minutes. The photocatalytic activity was directly affected by the ferrite load. The higher the nominal load of ferrite, the lower the performance in ibuprofen degrading. It was also observed that the smallest amount of ferrite studied was enough for the catalyst to be recovered and reused. The adsorption and photolysis tests did not show significant results in the IBP degradation. In addition, it was possible to verify that the aqueous matrix, the use of solar radiation and the addition of additive (acid formic) interfered direct in the process. The catalyst reuse tests indicated that it can be recovered and reused at least three times without considerable catalytic activity loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.