In this work, we report the economic impact of exposure to high ozone concentrations on four important crops in the area of influence of the Mexico City Megalopolis. Estimated yield losses were as follows: maize: 3%; oats: 26%; beans: 14%; sorghum: 15%. The information needed to estimate the impact of air pollution in Mexico is decidedly deficient. Regarding ozone, the coverage provided by the monitoring networks is strongly focused on urban monitoring and its consistency over time is highly irregular. Apart from the Mexico City Metropolitan Area (MCMA) and less than a handful of other cities, the quality of the data is poor. Ozone in rural areas can be estimated with air quality models. However, these models depend on a high-resolution emissions inventory, which has only been done through validation processes in the MCMA. With these limitations, we set out to estimate the economic impact of exposure to ozone in these crops with a varying degree of sensitivity to ozone in the city belt of Central Mexico. To this end, we developed a procedure that makes optimal use of the sparse information available for construction of AOT40 (accumulated exposure over the threshold of 40 ppb) exceedance maps for the 2011 growing season. We believe that, due to the way in which we dealt with the sparse information and the uncertainty regarding the available data, our findings lie on the safe side of having little knowledge such that they may be useful to decision-makers. We believe that this procedure can be extended to the rest of the country, and that it may be useful to developing countries with similar monitoring and modeling capacities. In addition, these impacts are not evenly distributed in the region and sometimes they were greater in municipalities that have a higher index of poverty. Air pollution arriving from urban areas increases the social inequalities to which these already vulnerable populations are exposed.
This paper quantifies and reduces the differences in emissions from the 2008 inventory with respect to the real ones through the use of satellite observations and modeling. Carbon monoxide column comparisons from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data were made against columns obtained from the WRF-Chem model, during the February month 2011. The analysis was carried out at the satellite passage local time (approximately 10:00 a.m.) over Mexico City. The 2008 national emissions inventory generated by the Ministry of Environment and Natural Resources (SEMARNAT) was employed. An inversion method was applied with the modeled and observed column data. With the above, scaling factors were obtained for 5 regions and the concentration from the model domain boundaries, which were used to update the emissions. The updated emissions were employed in modeling and the result was compared with surface measurements. For Mexico City and the Metropolitan Area, a scaling factor equal to 0.43 was obtained when using the 2008 emissions inventory; For Toluca, Morelos and Puebla, a less than one factor was estimated, while for Hidalgo and the concentration from model boundaries were close to two. The model performance was improved by an increment in the agreement index and a reduction on the mean square error when the updated CO emissions were used. initial results. Geophysical Research Letters, 33: L22806.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.