Crime observations are one of the principal inputs used by governments for designing citizens’ security strategies. However, crime measurements are obscured by underreporting biases, resulting in the so-called “dark figure of crime”. This work studies the possibility of recovering “true” crime and underreported incident rates over time using sequentially available daily data. For this, a novel underreporting model of spatiotemporal events based on the combinatorial multi-armed bandit framework was proposed. Through extensive simulations, the proposed methodology was validated for identifying the fundamental parameters of the proposed model: the “true” rates of incidence and underreporting of events. Once the proposed model was validated, crime data from a large city, Bogotá (Colombia), was used to estimate the “true” crime and underreporting rates. Our results suggest that this methodology could be used to rapidly estimate the underreporting rates of spatiotemporal events, which is a critical problem in public policy design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.