Bacterial translocation detected by microbiological cultures and MALDI-TOF showed that Escherichia coli predominates in mesenteric lymph nodes of BDL rats. Intestinal bacterial load analyzed by qPCR indicates a dramatic Escherichia/Shigella overgrowth at 8 and 30 days post-BDL. IFN-γ, IL-4, and IL-17 evaluated by Western blotting were increased at 8 and 30 days in the small intestine. In the colon, in contrast, only IFN-γ was significantly increased. The colonic mucus layer and mucin-2 expression determined by Alcian blue staining and immunohistochemistry surprisingly showed an increase in the mucus layer thickness related to increased mucin-2 expression during the entire process of liver damage. Hepatic enzymes, as well as collagen I, collagen III, TNF-α, and IL-6 liver gene expression were increased. In conclusion, bacterial overgrowth associated with bacterial translocation is linked to the over-expression of IFN-γ, IL-4, IL-17 and mucin-2. These molecules might facilitate the intestinal permeability through exacerbating the inflammatory process and disturbing tight junctions, leading to the perpetuation of the liver damage.
Background SARS‐CoV‐2 has become a global pandemic due to its capacity for rapid transmission. In this context, an early and rapid diagnosis of infected patients that do not require expensive equipment or highly trained personnel is crucial in order to reduce the contagious rate. The aim of this study was to evaluate a chromatographic immunoassay's performance for the rapid diagnosis of SARS‐CoV‐antigen. Methods A cross‐sectional study included 369 adults from Western México with diagnosis or suspicion of SARS‐CoV‐2 infection. Two samples were collected; a naso‐oropharyngeal was used for a molecular determination of SARS‐CoV‐2 RNA. The molecular analysis was carried out using DeCoV19 Kit Triplex (Genes2life S.A.P.I.) based on the CDC diagnostic panel for N1, N2, and N3 regions. The second sample was retrieved from a nasopharyngeal rub and used for the rapid diagnosis of SARS‐CoV‐2 antigen employing the commercial STANDARD™ Q COVID‐19 Ag Test (SD BIOSENSOR). Results Overall, in 28.2% of the patients was detected the SARS‐CoV‐2 RNA, and 21.4% were positive for antigen detection. The rapid antigen test showed a sensitivity and specificity of 75.9% and 100%, respectively, with a positive predictive and negative values of 100% and 91%. Symptoms as anosmia presented a high OR for the positive diagnosis for both test, reverse transcription‐polymerase chain reaction (RT‐PCR), and the rapid antigen test of 8.86 (CI = 4.91–16) and 6.09 (CI = 3.42–10.85), respectively. Conclusion SD BIOSENSOR is a useful assay, but some caveats must be considered before the general implementation.
The results demonstrate ethnic, race, age and gender disparities in iCCA incidence and survival, and confirm continued increase in iCCA incidence in the United States.
Chronic periodontitis (CP) is characterized by gingival inflammation and bone destruction. It has been reported that interferon-gamma (IFN-γ) levels are high in CP patients; however, the IFN-γ receptor (IFN-γR) has not been studied in gingival tissue from these patients.Objective:To evaluate IFN-γ levels and IFN-γR expression in gingival tissue biopsies from chronic periodontitis patients compared with healthy subjects (HS).Material and Methods:Gingival tissues were obtained from all study subjects, CP (n = 18) and healthy subjects (HS) (n = 12). A tissue section of each study subject was embedded in paraffin blocks to determine the expression of IFN-γ R (IFN-γR1 and IFN-γR2) through immunohistochemistry. Another section of the tissue was homogenized and IFN-γ was measured by the ELISA technique.Results:No significant differences were found in the IFN-γR1 expression within the cell layers of the gingival tissue of the study groups. When analyzing the IFN-γR2 expression it was found that IFN-γR2 is strongly expressed in the endothelial cells of CP patients when compared to HS (p<0.05). IFN-γ concentrations in the gingival tissue were significantly higher in CP patients than in HS. No significant correlation between IFN-γ levels and the expression of IFN-γR1 and IFN-γR2 was found. However, a positive correlation between IFN-γ levels and clinical parameters [probing depth (PD) and clinical attachment level (CAL)] was found.Conclusion:The study of IFN-γR expression in gingival tissue samples from patients with CP showed an increase only in the IFN-γR2 chain in endothelial cells when compared to HS.
Animal digestive systems host microorganism ecosystems, including integrated bacteria, viruses, fungi, and others, that produce a variety of compounds from different substrates with healthy properties. Among these substrates, α-galacto-oligosaccharides (GOS) are considered prebiotics that promote the grow of gut microbiota with a metabolic output of Short Chain Fatty Acids (SCFAs). In this regard, we evaluated Lupinus albus GOS (LA-GOS) as a natural prebiotic using different animal models. Therefore, the aim of this work was to evaluate the effect of LA-GOS on the gut microbiota, SCFA production, and intestinal health in healthy and induced dysbiosis conditions (an ulcerative colitis (UC) model). Twenty C57BL/6 mice were randomly allocated in four groups (n = 5/group): untreated and treated non-induced animals, and two groups induced with 2% dextran sulfate sodium to UC with and without LA-GOS administration (2.5 g/kg bw). We found that the UC treated group showed a higher goblet cell number, lower disease activity index, and reduced histopathological damage in comparison to the UC untreated group. In addition, the abundance of positive bacteria to butyryl-CoA transferase in gut microbiota was significantly increased by LA-GOS treatment, in healthy conditions. We measured the SCFA production with significant differences in the butyrate concentration between treated and untreated healthy groups. Finally, the pH level in cecum feces was reduced after LA-GOS treatment. Overall, we point out the in vivo health benefits of LA-GOS administration on the preservation of the intestinal ecosystem and the promotion of SCFA production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.