Mining affects the environment, particularly through the persistence of accumulation of tailings materials; this is aggravated under tropical climatic conditions, which favours the release of potentially toxic elements (PTEs) bioavailable to the local flora and fauna and supposing a risk to human health. The Remance gold mine (Panamá), exploited intermittently for more than 100 years, and has remained derelict for over 20 years. Within the area live farmers who carry out subsistence agriculture and livestock activities. The objective of this study has been to study the transference of PTEs in the local agricultural soil-plants system, with the goal of identifying their bioavailability to perform a human risk assessment. The results obtained of the Bioaccumulation coefficient in local plants show very weak to strong absorption of As (< 0.001–1.50), Hg (< 0.001–2.38), Sb (0.01–7.83), Cu (0.02–2.89), and Zn (0.06–5.32). In the case of Cu in grass (18.3 mg kg−1) and plants (16.9 mg kg−1) the concentrations exceed the maximum authorised value in animal nutrition for ruminants (10 mg kg−1). The risk to human health for edible plants exceeds the non-carcinogenic risk for rice, corn, cassava, and tea leaves for Sb (HQ 19.450, 18.304, 6.075, 1.830, respectively), the carcinogenic risk for Cu (CR = 2.3 × 10–3, 7.7 × 10 −4, 1.1 × 10–3, 1.0 × 10–3, respectively), and the carcinogenic risk for As in rice, corn and tea leaves (CR = 8 × 10–5, 3 × 10–5, 3 × 10–5, respectively). Urgent measures are needed to alleviate these effects.
<p><strong>Abstract</strong></p><p>The Remance gold mine, in Veraguas (central Panama), had its last mining operation in 1999, using the cyanidation process for Au separation. As a result of this activity, three waste tailings were exposed to the weather, in addition to mine dumps and the open pit mining areas. Currently the area is inhabited by peasants who develop subsistence agriculture and livestock. Therefore, the objective of this study has been to evaluate the environmental and human health risks that this area represents. The total concentrations of potentially toxic elements (PTEs) such as As, Cu, Zn, Ba, Sb and Hg were determined in mining process areas, surrounding soils and edible and inedible plants in the area; in addition to the cyanide species and the enzymatic activity by dehydrogenase (DHA) in soils. The accumulated contamination index (PLI) and potential ecological risk (RI) were calculated, the carcinogenic (CR) and non-carcinogenic (HQ) risk to human health represented by soils and edible plants was estimated.</p><p>Regarding the degree of contamination, it is observed that the contamination is considerable in the tailings and the sediments of the pithead, and it spreads to the surroundings mainly in the sediments of the streams and their terraces, and, to a lesser degree, to the soils around it, showing that the main route of dissemination is through runoff; the same trend is followed by the potential ecological risk, being extreme in the sediments of the pithead, serious in the tailings and terrace sediments, high in the stream sediments and medium in the surrounding soils. The enzymatic activity by DHA tells us that the health of the surrounding soils is better than that of the stream sediments and terrace sediments, but less than in other sites affected by mining activity in Spain. Cyanide species are linked to DHA and this in turn is favoured by organic matter (OM). On the other hand, it was observed that cyanide elutes from the tailing&#8217;s piles in a complex cyanide way, favouring the transport of PTEs associated with it to the stream sediments.</p><p>Regarding the risks to human health in soils, As and Cu concentrations exceed the limits for non-carcinogenic and carcinogenic risk in both children and adults, with the residential scenario being the worst scenario, and for adults also the agricultural scenario. In edible plants such as rice, corn, cassava and tea leaves, Sb exceeds the limit for non-carcinogenic risk, and Cu and As for carcinogenic risk. Due to the potential ecological and human health risks that the area represents, actions must be taken to reduce them.</p><p><strong>Keywords</strong>: potentially toxic elements (PTEs), gold mine, risk assessment, edible plants, human health.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.