The collection of fog water is a simple and sustainable technology to obtain fresh water for afforestation, gardening, and as a drinking water source for human and animal consumption. In regions where fresh water is sparse and fog frequently occurs, it is feasible to set up a passive mesh system for fog water collection. The mesh is directly exposed to the atmosphere, and the foggy air is pushed through the mesh by the wind. Fog droplets are deposited on the mesh, combine to form larger droplets, and run down passing into a storage tank. Fog water collection rates vary dramatically from site to site but yearly averages from 3 to 10 l m -2 of mesh per day are typical of operational projects. The scope of this article is to review fog collection projects worldwide, to analyze factors of success, and to evaluate the prospects of this technology.
Abstract-Oceans play a key role in energy storage in the global Earth-Ocean-Atmosphere system. Within this framework, the knowledge of past evolution and future trends of sea surface temperature is crucial for the future climate scenarios. Previous studies have highlighted the role of sea surface temperature as an important ingredient for the development and/or intensification of heavy precipitation events in the Western Mediterranean basin but have also highlighted its role in heat waves in Europe. In this study, a consistent warming trend has been found for daily sea surface temperature data series derived from satellites for the whole Mediterranean region and for different temporal scales, from daily to monthly, seasonal and decadal estimates. Additionally, spatial clustering analysis has been run to look for its spatial structure. Two main distribution modes have been found for sea surface temperature in winter and summer, while spring and fall show transitional regimes. Winter mode shows a north-to-south increasing gradient banded structure while summer regime presents a set of well-differentiated areas.
The Mediterranean basin has been classified as a hot-spot for climate change. The Mediterranean Sea plays a fundamental regulatory role in the regional climate. We have analyzed the largest available and complete time series (1982–2019) of blended sea surface temperature (SST) data to study its seasonal cycle and look for a possible warming trend in the basin. From the analysis of the Mediterranean mean SST time series, a new temporal seasonal division is derived that differs from the one used in atmospheric climatology. Then, the SST time series were decomposed into their seasonal and trend components, and a consistent warming trend of 0.035 °C/year was obtained. The nature of this trend has been investigated, indicating a higher warming trend for both maximum and high/summer SST values than for the winter/colder ones. This reinforces the consistency of the SST increase since it is not only based on the presence of extreme values, but on a homogeneous basin global increase of high SST records as well. Although warming is found throughout the Mediterranean basin, the spatial variability found leads to the division of the basin into three distinct subareas regarding warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.