Study of historic buildings requires a pathology analysis of the construction materials used in order to define their conservation state. Usually we can find capillary moisture, salt crystallization or density differences by deterioration. Sometimes this issue is carried out by destructive testing which determine materials' physical and chemical characteristics. However, they are unfavorable regarding the building's integrity, and they are sometimes difficult to implement. This paper presents a technique using infrared thermography to analyze the existing pathology and has the advantage of being able to diagnose inaccessible areas in buildings. The results obtained by this technique have been compared with those obtained in the laboratory, in order to validate this study and thus to extrapolate the methodology to other buildings and materials.
RESUMEN: Patología de materiales de construcción en edificios históricos. Relación entre ensayos de laboratorio y termografía infrarroja.El estudio de edificios históricos requiere un análisis de la patología de los materiales de construcción empleados para poder definir su estado de conservación. Habitualmente nos encontramos con humedades por capilaridad, cristalización de sales o diferencias de densidad por deterioro. En ocasiones esto se lleva a cabo mediante ensayos destructivos que nos determinan las características físicas y químicas de los materiales, pero que resultan desfavorables respecto a la integridad del edificio, y en ocasiones resulta complejo llevarlos a cabo. Este trabajo presenta una técnica para analizar la patología existente mediante el empleo de termografía infrarroja con la ventaja de poder diagnosticar zonas de difícil acceso en los edificios. Para validar este estudio se han comparado los resultados obtenidos mediante esta técnica con los alcanzados en el laboratorio. De esta forma podemos extrapolar la metodología empleada a otros edificios y materiales.
The awareness of society on environmental issues has increased in recent years. This article focuses on the wood–plastic composites (WPCs), obtained from recycled plastics and natural fibres waste, and their application in architecture. In order to give some recommendations to architects regarding the choice of a WPC as an alternative to wood for uses in outdoor decking, a series of standardized physical, mechanical and chemical tests have been carried out on two commercial WPC materials: one with a polyvinyl chloride (PVC) – PVC matrix and rice husk filler and a second one with a polyethylene (PE) – PE matrix and pine wood reinforcement. Mechanical, thermal and ageing behaviour of these commercial WPC has been broadly studied. This research provides value information to find out which WPC material best support durability aspects, those that most concern in an architectural application of outdoor decking. In general terms, WPC developed by PVC matrix and rice husk as filler shown greater physical–mechanical properties, better resistance to chemical agents and greater resistance to ageing behaviour and changes in visual aspect.
Non-destructive techniques methodologies for the detection of ancient structures under heritage buildingsStructures and elements buried beneath heritage buildings are frequent but are often unknown and inaccessible. Therefore, they are difficult to locate in general if an archaeological excavation is not carried out, with the economic cost and time involved. It is important to discover them in order to increase our knowledge of cultural heritage, as well as to know, recover and improve the state of conservation of the materials that make up these structures. This paper presents methodologies for locating old structures using a low-cost NDT approach, with a qualitative and quantitative analysis of GPR profiles in heritage buildings. Small perforations are performed at critical points and introducing an endoscope for verification. Various crypts have been located using the proposed methodologies in a real study case: The Church of the Asución of Llíria in Spain.
The present work tries to determine the factors that influence the crystallization of soluble salts in the stone material used in the construction of buildings in Valencia (Spain). Samples are obtained from a building which has served to accomplish observations and laboratory experiments necessary in order to determine the pathology of deterioration of the material. It was particularized in the exposition conditions of the material as a base for determining the morphologies of deterioration caused by salts in the same lithotype. The main contribution is the petrological study from the architectural point of view considering its orientation, sunlight in façade, and so forth. This study proves that both material petrology (its mineralogy and texture) and the properties related to the movement of water inside rocks play a decisive role in the conservation and development of elements in the alteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.