SummaryModerate exercise is a healthy practice. However, exhaustive exercise generates free radicals. This can be evidenced by increases in lipid peroxidation, glutathione oxidation, and oxidative protein damage. It is well known that activity of cytosolic enzymes in blood plasma is increased after exhaustive exercise. This may be taken as a sign of damage to muscle cells. The degree of oxidative stress and of muscle damage does not depend on the absolute intensity of exercise but on the degree of exhaustion of the person who performs exercise. Training partially prevents free radical-formation in exhaustive exercise. Treatment with antioxidants such as vitamins C or E protects in part against free radical-mediated damage in exercise. Xanthine oxidase is involved in free-radical formation in exercise in humans and inhibition of this enzyme with allopurinol decreases oxidative stress and muscle damage associated with exhaustive exercise. Knowledge of the mechanism of free-radical formation in exercise is important because it will be useful to prevent oxidative stress and damage associated with exhaustive physical activity. IUBMB Life, 50: 271 -277, 2000
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.