The aim of this work was to perform an analysis of the influence of Sodium Fluoride (NaF) on chitosan particles size and morphology produced via ionotropic gelation with higher rotational stirring speed. Samples were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS), Zeta Potential (ζ), Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM/EDS). Chitosan/TPP particles diameter obtained was in the order of 3.8 µm. When NaF was added in different concentration (0.05%, 0.2% and 2%), the particle size diameter values, Zeta Potential and Poly Dispersive Index measures consequently decreased. Even so, no further modification in morphology was found. An exception was made for the samples with higher NaF concentration. After 21 days, occurred an increase in the particle size diameter. In the future, the proposed methodology could provide a dentistry application, especially on delivering particles of NaF.
Poly(ether ether ketone) (PEEK) has excellent properties, such as high biocompatibility and an elastic modulus similar to bone, which makes it a suitable biomaterial. When modified with sulfuric acid (H 2 SO 4) and hydroxyapatite (HA), its workability and bioactivity is enhanced, and this makes it of great importance in medicine. This study investigates a better combination of process parameters to manufacture sulfonated PEEK/HA (SPEEK/HA) membranes for biomaterials. Chemical, thermal, and biological analyses were carried out on all samples. The sulfonated structure was observed to enhance wettability, adhesion, and cell viability. Furthermore, an increase in the degree of sulfonation facilitated their workability as required for biomaterials; making them suitable for osseointegration. Besides, the SPEEK/HA membranes presented cell adhesion, confirming the viability to use as biomaterial. This study presents a cheap alternative method to easily process biomaterials of improved workability.
Epoxy resin based on bisphenol A diglycidyl ether/anhydride methyl tetrahydrophthalic/2,4,6-tris(dimethylaminomethyl)phenol (DGEBA/MTHPA/DEH 35) was produced by magnetic stirring; chicken eggshell (ES) was added as cure improver. Thermal stability, cure parameters, mechanical properties, and fracture surface were investigated by thermogravimetry (TGA), differential scanning calorimetry (DSC), tensile experiments, and scanning electron microscopy (SEM). In general, the addition of ES slightly decreased the thermal stability, being T0.05 5% lower than that of the reference sample. The cure rate increased with the heating rates, while best results were obtained upon addition of neat membrane (M) from ES. Surprisingly, the mechanical properties were significantly improved with ES as well as with M, being the Young’s modulus 18% higher, the tensile strength 50% higher, and the deformation 35% higher than those of epoxy resin. SEM images showed that the synthetic compounds presented a smooth fracture surface, while the compounds with ES and M had a rougher surface with multiplane fractures, suggesting a fracture with higher energy absorption. In conclusion, epoxy/ES composites with better performance were produced, and effective tools are provided to control and attain in the future even better properties with ecological features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.