ADP-ribosylation, a modification of proteins, nucleic acids and metabolites, confers broad functions, including roles in stress responses elicited for example by DNA damage and viral infection and is involved in intra-and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis and cell death. ADP-ribosylation is catalyzed by ADPribosyltransferases, which transfer ADP-ribose from NAD + onto substrates. The modification, which occurs as mono-or poly-ADP-ribosylation, is reversible due to the action of different ADPribosylhydrolases. Importantly, inhibitors of ADP-ribosyltransferases are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as anti-viral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being
Nuclear PARP-1 is overexpressed during the malignant transformation of the breast, particularly in triple-negative tumors, and independently predicts poor prognosis in operable invasive breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.