SUMMARY While many genetic variants have been associated with risk for human diseases, how these variants affect gene expression in various cell types remains largely unknown. To address this gap, the DICE (Database of Immune Cell Expression, Expression quantitative trait loci (eQTLs) and Epigenomics) project was established. Considering all human immune cell types and conditions studied, we identified cis-eQTLs for a total of 12,254 unique genes, which represent 61% of all protein-coding genes expressed in these cell types. Strikingly, a large fraction (41%) of these genes showed a strong cis-association with genotype only in a single cell type. We also found that biological sex is associated with major differences in immune cell gene expression in a highly cell-specific manner. These datasets will help reveal the effects of disease risk-associated genetic polymorphisms on specific immune cell types, providing mechanistic insights into how they might influence pathogenesis (http://dice-database.org).
The expression of CD45RA is generally associated with naive T cells. However, a subset of effector memory T cells re-expresses CD45RA (termed TEMRA) after antigenic stimulation with unknown molecular characteristics and functions. CD4 TEMRA cells have been implicated in protective immunity against pathogens such as dengue virus (DENV). Here we show that not only the frequency but also the phenotype of CD4 TEMRA cells are heterogeneous between individuals. These cells can be subdivided into two major subsets based on the expression of the adhesion G protein-coupled receptor GPR56, and GPR56 + TEMRA cells display a transcriptional and proteomic program with cytotoxic features that is distinct from effector memory T cells. Moreover, GPR56 + TEMRA cells have higher levels of clonal expansion and contain the majority of virus-specific TEMRA cells. Overall, this study reveals the heterogeneity of CD4 TEMRA cells and provides insights into T-cell responses against DENV and other viral pathogens.
Type 1 diabetes (T1D) results from a complex interplay between genetic susceptibility and environmental factors that have been implicated in the pathogenesis of disease both as triggers and potentiators of β-cell destruction. CD8 T cells are the main cell type found in human islets, and they have been shown in vitro to be capable of killing β-cells overexpressing MHC class I. In this study, we report that CD8 T cells infiltrate the exocrine pancreas of diabetic subjects in high numbers and not only endocrine areas. T1D subjects present significantly higher CD8 T cell density in the exocrine tissue without the presence of prominent insulitis. Even T1D donors without remaining insulin-containing islets and long disease duration show elevated levels of CD8 T cells in the exocrine compartment. In addition, higher numbers of CD4+ and CD11c+ cells were found in the exocrine tissue. Preliminary data in type 2 diabetic (T2D) subjects indicate that overall, there might be a spontaneous inflammatory infiltration of the exocrine tissue, common to both T1D and T2D subjects. Our study provides the first information on the precise tissue distribution of CD8 T cells in pancreata from T1D, T2D, autoantibody-positive, and healthy control subjects.
Background Antibody responses to virus reflect exposure and potential protection. Methods We developed a highly specific and sensitive approach to measuring antibodies against SARS-CoV-2 for population-scale immune surveillance. Antibody positivity was defined as a dual-positive response against both the receptor binding domain and nucleocapsid proteins of SARS-CoV-2. Antibodies were measured by immuno-precipitation assays in capillary blood from 15,771 children aged 1 to 18 years living in Bavaria, Germany, and participating in a public health type 1 diabetes screening program (Clinicaltrials.gov NCT04039945) , in 1,916 dried blood spots from neonates in a Bavarian screening study ( Clinicaltrials.gov NCT03316261) , and in 75 SARS-CoV-2 positive individuals. Virus positive incidence was obtained from Bavarian health authority data. Findings. Dual-antibody positivity was detected in none of 3887 children in 2019 (100% specificity) and 73 of 75 SARS-CoV-2 positive individuals (97.3% sensitivity). Antibody surveillance in children during 2020 resulted in frequencies of 0.08% in January to March, 0.61% in April, 0.74% in May, 1.13% in June and 0.91% in July. Antibody prevalence from April 2020 was six-fold higher than the incidence of authority-reported cases (156 per 100,000 children), showed marked variation between the seven Bavarian regions ( P <0.0001), and was not associated with age or sex. Transmission in children with virus-positive family members was 35%; 47% of positive children were asymptomatic. No association with type 1 diabetes autoimmunity was observed. Antibody frequency in newborns was 0.47%. Conclusion We demonstrate the value of population-based screening programs for pandemic monitoring. Funding. The work was supported by funding from the BMBF (FKZ01KX1818).
Type 1 diabetes is characterized by the loss of insulin production caused by β-cell dysfunction and/or destruction. The hypothesis that β-cell loss occurs early during the prediabetic phase has recently been challenged. Here we show, for the first time in situ, that in pancreas sections from autoantibody-positive (Ab+) donors, insulin area and β-cell mass are maintained before disease onset and that production of proinsulin increases. This suggests that β-cell destruction occurs more precipitously than previously assumed. Indeed, the pancreatic proinsulin-to-insulin area ratio was also increased in these donors with prediabetes. Using high-resolution confocal microscopy, we found a high accumulation of vesicles containing proinsulin in β-cells from Ab+ donors, suggesting a defect in proinsulin conversion or an accumulation of immature vesicles caused by an increase in insulin demand and/or a dysfunction in vesicular trafficking. In addition, islets from Ab+ donors were larger and contained a higher number of β-cells per islet. Our data indicate that β-cell mass (and function) is maintained until shortly before diagnosis and declines rapidly at the time of clinical onset of disease. This suggests that secondary prevention before onset, when β-cell mass is still intact, could be a successful therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.