Chronic morphine administration increases levels of adenylyl cyclase and cAMP-dependent protein kinase (PKA) activity in the locus coeruleus (LC), which contributes to the severalfold activation of LC neurons that occurs during opiate withdrawal. A role for the transcription factor cAMP response elementbinding protein (CREB) in mediating the opiate-induced upregulation of the cAMP pathway has been suggested, but direct evidence is lacking. In the present study, we first demonstrated that the morphine-induced increases in adenylyl cyclase and PKA activity in the LC are associated with selective increases in levels of immunoreactivity of types I and VIII adenylyl cyclase and of the catalytic and type II regulatory subunits of PKA. We next used antisense oligonucleotides directed against CREB to study the role of this transcription factor in mediating these effects. Infusion (5 d) of CREB antisense oligonucleotide directly into the LC significantly reduced levels of CREB immunoreactivity. This effect was sequence-specific and not associated with detectable toxicity. CREB antisense oligonucleotide infusions completely blocked the morphine-induced upregulation of type VIII adenylyl cyclase but not of PKA. The infusions also blocked the morphine-induced upregulation of tyrosine hydroxylase but not of Gi␣, two other proteins induced in the LC by chronic morphine treatment. Electrophysiological studies revealed that intra-LC antisense oligonucleotide infusions completely prevented the morphine-induced increase in spontaneous firing rates of LC neurons in brain slices. This blockade was completely reversed by addition of 8-bromo-cAMP (which activates PKA) but not by addition of forskolin (which activates adenylyl cyclase). Intra-LC infusions of CREB antisense oligonucleotide also reduced the development of physical dependence to opiates, based on attenuation of opiate withdrawal. Together, these findings provide the first direct evidence that CREB mediates the morphine-induced upregulation of specific components of the cAMP pathway in the LC that contribute to physical opiate dependence.Key words: morphine; opiate withdrawal; gene expression; cAMP; adenylyl cyclase; protein kinase A; G-proteins; tyrosine hydroxylase; protein phosphorylationThe locus coeruleus (LC) has served as a usef ul model system in which to study the long-term actions of opiates on target neurons. The LC is the major noradrenergic nucleus in brain, located on the floor of the fourth ventricle in the anterior pons (Dahlstrom and Fuxe, 1965;Foote et al., 1983;Aston-Jones et al., 1996). Under normal conditions, the LC is implicated in controlling attention, vigilance, and activity of the autonomic nervous system. The LC also has been implicated in physical opiate dependence. Whereas acute opiate administration inhibits the activity of LC neurons, their firing rates recover toward control levels after chronic exposure and increase more than fourfold above control levels on administration of an opioid receptor antagonist in vivo (Aghajanian, 1978;Rasmuss...
The transcription factor cAMP-responsive element binding protein (CREB) has been shown to regulate different physiological responses including drug addiction and emotional behavior. Molecular changes including adaptive modifications of the transcription factor CREB are produced during drug dependence in many regions of the brain, including the locus coeruleus (LC), but the molecular mechanisms involving CREB within these regions have remained controversial. To further investigate the involvement of CREB in emotional behavior, drug reward and opioid physical dependence, we used two independently generated CREB-deficient mice. We employed the Cre/loxP system to generate mice with a conditional CREB mutation restricted to the nervous system, where all CREB isoforms are lacking in the brain (Creb1 NesCre ). A genetically defined cohort of the previously described hypomorphic Creb1 aD mice, in which the two major transcriptionally active isoforms (a and D) are disrupted throughout the organism, were also used. First, we investigated the responses to stress of the CREB-deficient mice in several paradigms, and we found an increased anxiogenic-like response in the both Creb1 mutant mice in different behavioral models. We investigated the rewarding properties of drugs of abuse (cocaine and morphine) and natural reward (food) using the conditioned place-preference paradigm. No modification of motivational responses of morphine, cocaine, or food was observed in mutant mice. Finally, we evaluated opioid dependence by measuring the behavioral expression of morphine withdrawal and electrophysiological recordings of LC neurons. We showed an important attenuation of the behavioral expression of abstinence and a decrease in the hyperactivity of LC neurons in both Creb1 mutant mice. Our results emphasize the selective role played by neuronal CREB in emotional-like behavior and the somatic expression morphine withdrawal, without participating in the rewarding properties induced by morphine and cocaine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.