Fluid accumulation is associated with adverse outcomes in critically ill patients. Here, we sought to determine if fluid accumulation is associated with mortality and non-recovery of kidney function in critically ill adults with acute kidney injury. Fluid overload was defined as more than a 10% increase in body weight relative to baseline, measured in 618 patients enrolled in a prospective multicenter observational study. Patients with fluid overload experienced significantly higher mortality within 60 days of enrollment. Among dialyzed patients, survivors had significantly lower fluid accumulation when dialysis was initiated compared to non-survivors after adjustments for dialysis modality and severity score. The adjusted odds ratio for death associated with fluid overload at dialysis initiation was 2.07. In non-dialyzed patients, survivors had significantly less fluid accumulation at the peak of their serum creatinine. Fluid overload at the time of diagnosis of acute kidney injury was not associated with recovery of kidney function. However, patients with fluid overload when their serum creatinine reached its peak were significantly less likely to recover kidney function. Our study shows that in patients with acute kidney injury, fluid overload was independently associated with mortality. Whether the fluid overload was the result of a more severe renal failure or it contributed to its cause will require clinical trials in which the role of fluid administration to such patients is directly tested.
Background: Organ congestion is a mediator of adverse outcomes in critically ill patients. Point-Of-Care ultrasound (POCUS) is widely available and could enable clinicians to detect signs of venous congestion at the bedside. The aim of this study was to develop several grading system prototypes using POCUS and to determine their respective ability to predict acute kidney injury (AKI) after cardiac surgery. This is a post-hoc analysis of a single-center prospective study in 145 patients undergoing cardiac surgery for which repeated daily measurements of hepatic, portal, intra-renal vein Doppler and inferior vena cava (IVC) ultrasound were performed during the first 72 h after surgery. Five prototypes of venous excess ultrasound (VExUS) grading system combining multiple ultrasound markers were developed. Results: The association between each score and AKI was assessed using time-dependant Cox models as well as conventional performance measures of diagnostic testing. A total of 706 ultrasound assessments were analyzed. We found that defining severe venous congestion as the presence of severe flow abnormalities in multiple Doppler patterns with a dilated IVC (≥ 2 cm) showed the strongest association with the development of subsequent AKI compared with other combinations (HR: 3.69 CI 1.65-8.24 p = 0.001). The association remained significant after adjustment for baseline risk of AKI and vasopressor/inotropic support (HR: 2.82 CI 1.21-6.55 p = 0.02). Furthermore, this severe VExUS grade offered a useful positive likelihood ratio (+LR: 6.37 CI 2.19-18.50) when detected at ICU admission, which outperformed central venous pressure measurements. Conclusions: The combination of multiple POCUS markers may identify clinically significant venous congestion.
IntroductionSerum creatinine concentration (sCr) is the marker used for diagnosing and staging acute kidney injury (AKI) in the RIFLE and AKIN classification systems, but is influenced by several factors including its volume of distribution. We evaluated the effect of fluid accumulation on sCr to estimate severity of AKI.MethodsIn 253 patients recruited from a prospective observational study of critically-ill patients with AKI, we calculated cumulative fluid balance and computed a fluid-adjusted sCr concentration reflecting the effect of volume of distribution during the development phase of AKI. The time to reach a relative 50% increase from the reference sCr using the crude and adjusted sCr was compared. We defined late recognition to estimate severity of AKI when this time interval to reach 50% relative increase between the crude and adjusted sCr exceeded 24 hours.ResultsThe median cumulative fluid balance increased from 2.7 liters on day 2 to 6.5 liters on day 7. The difference between adjusted and crude sCr was significantly higher at each time point and progressively increased from a median difference of 0.09 mg/dL to 0.65 mg/dL after six days. Sixty-four (25%) patients met criteria for a late recognition to estimate severity progression of AKI. This group of patients had a lower urine output and a higher daily and cumulative fluid balance during the development phase of AKI. They were more likely to need dialysis but showed no difference in mortality compared to patients who did not meet the criteria for late recognition of severity progression.ConclusionsIn critically-ill patients, the dilution of sCr by fluid accumulation may lead to underestimation of the severity of AKI and increases the time required to identify a 50% relative increase in sCr. A simple formula to correct sCr for fluid balance can improve staging of AKI and provide a better parameter for earlier recognition of severity progression.
I n 2012, Kidney Disease: Improving Global Outcomes (KDIGO) published a guideline on the classification and management of acute kidney injury (AKI). 1 Since then, new evidence has emerged that has important implications for clinical practice. Large epidemiology studies and risk profiles for AKI have become available in adults and children, such as the AKI-Epidemiologic Prospective Investigation (AKI-EPI) study, 2 the 0by25 Initiative, 3 the Southeast Asia-AKI (SEA-AKI) study, 4 and the Assessment of Worldwide Acute Kidney Injury, Renal Angina, and Epidemiology (AWARE) 5 and Assessment of Worldwide Acute Kidney Injury Epidemiology in Neonates (AWAKEN) 6 studies. The effectiveness of the KDIGO recommendations in preventing AKI has been confirmed in small single-center randomized controlled trials (RCTs), such as the Prevention of AKI (PrevAKI) 7 and the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.