Risperidone and its active metabolite 9-OH-risperidone were compared to reference antipsychotic drugs (haloperidol, pipamperone, fluspirilene, clozapine, zotepine) and compounds under development (olanzapine, seroquel, sertindole, ORG-5222, ziprasidone) for in vitro binding to neurotransmitter receptors in brain tissue and on membranes of recombinant cells expressing cloned human receptors and for in vivo occupancy of neurotransmitter receptors in rat and guinea-pig brain following acute treatment (2 h., s.c.). An ex vivo autoradiography technique was applied to determine the receptor occupancy by the drugs administered in vivo. Of particular interest are the central 5HT2A receptors and D2-type receptors. Predominant 5HT2A receptor antagonism is supposed to add to an atypical profile of the antipsychotics (treatment of the negative symptoms, low incidence of extrapyramidal side effects). D2 antagonism is required the treatment of positive symptoms. A contribution of the new dopamine receptor subtypes D3 and in particular D4 receptors has been proposed. In vitro, all compounds, except the 'typical' antipsychotics haloperidol and fluspirilene, showed higher affinity for 5HT2A than for D2 receptors. Subnanomolar affinity for human 5HT2A receptors was observed for ORG-5222, sertindole, risperidone, 9-OH-risperidone and ziprasidone. Fluspirilene, ORG-5222, haloperidol, ziprasidone, risperidone, 9-OH-risperidone and zotepine displayed nanomolar affinity for human D2 receptors. Sertindole and olanzapine were slightly less potent. Pipamperone, clozapine and seroquel showed 2 orders of magnitude lower D2 affinity in vitro. Clozapine, but even more so pipamperone, displayed higher affinity for D4 than for D2 receptors. For most other compounds, D4 affinity was only slightly lower than their D2 affinity. Seroquel was totally devoid of D4 affinity. None of the compounds had nanomolar affinity for D1 receptors; their affinity for D3 receptors was usually slightly lower than for D2 receptors. In vivo, ORG-5222, risperidone, pipamperone, 9-OH-risperidone, sertindole, olanzapine, zotepine and clozapine maintained a higher potency for occupying 5HT2A than D2 receptors. Risperidone and ORG-5222 had 5HT2A versus D2 potency ratio of about 20. Highest potency for 5HT2A receptor occupancy was observed for ORG-5222 followed by risperidone and olanzapine. Ziprasidone exclusively occupied 5HT2A receptors. ORG-5222, haloperidol, fluspirilene and olanzapine showed the highest potency for occupying D2 receptors. No regional selectivity for D2 receptor occupancy in mesolimbic versus nigrostriatal areas was detected for any of the test compounds. Risperidone was conspicuous because of its more gradual occupancy of D2 receptors; none of the other compounds showed this property. The various compounds also displayed high to moderate occupancy of adrenergic alpha 1 receptors, except fluspirilene and ziprasidone. Clozapine, zotepine, ORG-5222 and sertindole occupied even more alpha 1 than D2 receptors. Clozapine showed predominant occupancy of H1 ...
In the introductory section an overview is given of the strategies which have been proposed in the search for side-effect free antipsychotics. Special attention is paid to the role of predominant 5HT2 receptor blockade over D2 blockade. Whereas D2 receptor blockade seems to be essential for the treatment of positive symptoms of schizophrenia, it also underlies the induction of extrapyramidal side effects (EPS). Predominant 5HT2 receptor blockade may reduce the EPS liability and can ameliorate negative symptoms of schizophrenia. We further report a nearly complete list of neuroleptics that are on the European market and eight new antipsychotics that recently entered clinical trial, 5HT2 and D2 receptor binding affinity (Ki values) and the rank order in affinity for various neurotransmitter receptor subtypes are also discussed. For the eight new antipsychotics and for six reference compounds the complete receptor binding profile (including 33 radioligand receptor binding and neurotransmitter uptake models) is reported. Furthermore, for a series of 120 compounds the relative affinity for D2 receptors and D3 receptors (a recently cloned new dopamine receptor subtype) is compared. Finally, original findings are reported for the new antipsychotic risperidone and for haloperidol and clozapine on the in vivo occupation of neurotransmitter receptors in various brain areas after systemic treatment of rats or guinea pigs. The receptor occupation by the drugs was measured ex vivo by quantitative receptor autoradiography. The receptor occupancy was related to the motor activity effects of the test compounds (measurements were done in the same animals) and to the ability of the drugs to antagonize various 5HT2 and D2 receptor mediated effects. With risperidone a high degree of central 5HT2 receptor occupation was achieved before other neurotransmitter receptors became occupied. This probably co-underlies the beneficial clinical properties of the drug. Antagonism of the various D2 receptor-mediated effects was achieved at widely varying degrees of D2 receptor occupancy, from just about 10% to more than 70%. For therapeutic application it may be of prime importance to carefully titrate drug dosages. Antipsychotic effects may be achieved at a relatively low degree of D2 receptor occupancy at which motor disturbances are still minimal. With drugs such as risperidone that produce shallow log dose-effect curves, differentiation between the various D2 receptor mediated effects may be made more easily, allowing EPS-free maintenance therapy of schizophrenic patients.
5-HT(2) receptors are G-protein coupled receptors that currently comprise three subtypes: 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. The subtypes are related in their molecular structure, amino acid sequence and signaling properties. 5-HT(2A) and 5-HT(2C) receptors have a widespread distribution and function in the central nervous system. 5-HT(2A)and 5-HT(2C) receptor antagonism is a property of certain antipsychotic and antidepressant drugs. 5-HT(2B) receptors have a restricted expression in the central nervous system. They have an important role in embryogenesis and in the periphery. In this article, selected aspects of 5-HT(2) receptor research are reviewed for each subtype under three main headings : (i) genes, protein structure and receptor signaling; (ii) receptor localization with emphasis on the CNS and (iii) compounds. The general discussion reflects on the reasons for the limited success in the clinic of 5-HT(2) receptor subtype selective drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.