Casiopeínas® are copper complexes with the general formula [Cu(N-N)(N-O)]NO(3) and [Cu(N-N)(O-O)]NO(3) where N-N denotes a substituted bipyridine or phenanthroline, N-O indicates α-aminoacidate or peptide and O-O represents acetylacetonate or salicylaldehyde. This family of compounds has been evaluated in vitro and in vivo showing cytotoxic, genotoxic, and antineoplastic activity. The action mechanism is still not completely elucidated, but the possibility exists that these compounds interact with DNA by intercalation due to the aromatic moiety. In this work we found, using the properties of the electron density of a π-complex model base-Casiopeína®-base, that the stacking mechanism between Casiopeínas® and DNA bases is due to an electron density deficiency of the ligand of the Casiopeína® which is compensated for by an electron transfer from adenines by a π-π interaction.
The normal and reverse Perlin effect is usually explained by the redistribution of electron density produced by hyperconjugative mechanisms, which increases the electron population within axial or equatorial proton in normal or reverse effect, respectively. Here an alternative explanation for the Perlin effect is presented on the basis of the topology of the induced current density, which directly determines the nuclear magnetic shielding. Current densities around the C-H bond critical point and intra-atomic and interatomic contributions to the magnetic shielding explain the observed Perlin effect. The balance between intra-atomic and interatomic contributions determines the difference in the total atomic shielding. Normal Perlin effect is dominated by intra-atomic part, whereas reverse effect is dominated by interatomic contribution.
Four Metal-Organic Frameworks (MOFs) were modeled (IRMOF-C-BF2, IRMOF-C-(2)-BF2, IRMOF-C’-BF2, and IRMOF-C-CH2BF2) based on IRMOF-1. A series of linkers, based on Frustrated Lewis Pairs and coumarin moieties, were attached to IRMOF-1 to obtain MOFs with photocatalytic properties. Four different linkers were used: (a) a BF2 attached to a coumarin moiety at position 3, (b) two BF2 attached to a coumarin moiety in positions 3 and 7, (c) a BF2 attached in the coumarin moiety at position 7, and (d) a CH2BF2 attached at position 3. An analysis of the adsorption properties of H2, CO2, H2O and possible CO2 photocatalytic capabilities was performed by means of computational modeling using Density Functional Theory (DFT), Time-Dependent Density Functional (TD-DFT) methods, and periodic quantum chemical wave function approach. The results show that the proposed linkers are good enough to improve the CO2 adsorption, to hold better bulk properties, and obtain satisfactory optical properties in comparison with IRMOF-1 by itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.