This article deals with studies on the grain size-related characterization of various types of waste for the production of Solid Recovered Fuel (SRF) for the cement industry. By implementing a suitable combination of the mechanical processes and adjusting the proportions of the waste types used, different properties of SRF in certain parameters can be set. In addition to the process technology, the treated solid waste types themselves have the greatest impact on the final quality of SRF.Here, the practical investigation for the characterization of various grain size classes generated of different solid waste types (packaging waste and commercial waste) used for the production of SRF is described. These investigations have been divided into a series of tests (12) with an industrial waste screen and in further tests with a laboratory screen and chemical analyses of all of the produced grain size classes. The mass distribution of the investigated grain size classes for each type of waste show significant differences. As assumed, the parameters calorific value and dry mass content of all types of waste increase with growing grain size. For most heavy metals and chlorine, no clear trend can be shown. For example, nickel accumulates in the commercial waste types in the grain size class 0-20 mm, in the packaging waste in class > 65 mm. The data on waste input material and generation of proper input waste mix is required for production of quality assured and homogeneous SRF for energy recovery in cement industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.