This review summarizes some available information on gender differences of myocardial injury with particular attention to experimental approach. It has been observed that significant gender differences exist already in normal heart. They involve among others cardiac growth, contractile function, calcium metabolism and function of mitochondria. Differences, characteristic of the normal myocardium, generate the logical presumption of the different reaction of the male and female heart to various pathogenic factors. Most of the experimental studies confirm the clinical observations: increased resistance of the female heart to ischemia/reperfusion injury was shown in dogs, rats, mice and rabbits. Furthermore, gender differences in the ischemic tolerance of the adult myocardium can be influenced by interventions (e.g. hypoxia) imposed during the early phases of ontogenetic development. The already high tolerance of the adult female heart can be increased by adaptation to chronic hypoxia and ischemic preconditioning. It seems that the protective effect depends on age: it was absent in young, highly tolerant heart but it appeared with the decrease of natural resistance during aging. Both experimental and clinical studies have indicated that female gender influences favorably also the remodeling and the adaptive response to myocardial infarction. It follows from the data available that male and female heart differs significantly in many parameters under both physiological and pathological conditions. Detailed molecular and cellular mechanisms of these differences are still unknown; they involve genomic and non-genomic effects of sex steroid hormones, particularly the most frequently studied estrogens. The cardiovascular system is, however, influenced not only by estrogens but also by other sex hormones, e.g. androgens. Moreover, steroid hormone receptors do not act alone but interact with a broad array of co-regulatory proteins to alter transcription. The differences are so important that they deserve serious consideration in clinical practice in search for proper diagnostic and therapeutic procedures.
Our data showed no difference in the overall post-heart transplant survival and freedom from acute cellular and antibody-mediated rejection between anti-AT1R-negative and anti-AT1R-positive recipients. Further research is needed to assess the role of anti-AT1R antibodies in the risk stratification of LVAD-bridged recipients on the post-heart transplantation outcomes.
1. The number of adult patients undergoing surgery for congenital cyanotic defects in childhood has increased significantly. Therefore, the aim of the present study was to examine the effect of perinatal hypoxia on the tolerance of the adult myocardium to acute ischaemia-reperfusion injury. 2. Pregnant Wistar rats were exposed to intermittent hypobaric hypoxia 7 days before delivery; pups were born under normoxic conditions and exposed to hypoxia again for 10 postnatal days. After the last hypoxic exposure, all animals were kept for an additional 3 months under normoxic conditions. All experiments were performed on 90-day-old rats. 3. Ventricular arrhythmias were assessed on isolated perfused hearts during 30 min occlusion of the left anterior descending coronary artery. Infarct size was measured on isolated hearts (40 min regional ischaemia and 120 min reperfusion) and on open-chest animals (20 min regional ischaemia and 3 h reperfusion). 4. Perinatal exposure to hypoxia significantly increased cardiac tolerance to ischaemic injury in adult females, as evidenced by the lower incidence and severity of ischaemic ventricular arrhythmias, compared with the normoxic group. The effect of perinatal hypoxia on ischaemic arrhythmias in males was quite the opposite. Myocardial infarct size measured in open-chest animals only was significantly smaller in normoxic females compared with normoxic males. Perinatal exposure to hypoxia had no effect on infarct size in either setting or sex. 5. The results of the present study support the hypothesis that perinatal hypoxia is a primary programming stimulus in the heart that may lead to sex-dependent changes in cardiac tolerance to acute ischaemia in later adult life. This would have important implications for patients who have experienced prolonged hypoxaemia in early life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.