Abstract-Elastic graph matching has been proposed as a practical implementation of dynamic link matching, which is a neural network with dynamically evolving links between a reference model and an input image. Each node of the graph contains features that characterize the neighborhood of its location in the image. The elastic graph matching usually consists of two consecutive steps, namely a matching with a rigid grid, followed by a deformation of the grid, which is actually the elastic part. The deformation step is introduced in order to allow for some deformation, rotation, and scaling of the object to be matched. This method is applied here to the authentication of human faces where candidates claim an identity that is to be checked. The matching error as originally suggested is not powerful enough to provide satisfying results in this case. We introduce an automatic weighting of the nodes according to their significance. We also explore the significance of the elastic deformation for an application of face-based person authentication. We compare performance results obtained with and without the second matching step. Results show that the deformation step slightly increases the performance, but has lower influence than the weighting of the nodes. The best results are obtained with the combination of both aspects. The results provided by the proposed method compare favorably with two methods that require a prior geometric face normalization, namely the synergetic and eigenface approaches.
Abstract-One of the open issues in fingerprint verification is the lack of robustness against image-quality degradation. Poor-quality images result in spurious and missing features, thus degrading the performance of the overall system. Therefore, it is important for a fingerprint recognition system to estimate the quality and validity of the captured fingerprint images. In this work, we review existing approaches for fingerprint image-quality estimation, including the rationale behind the published measures and visual examples showing their behavior under different quality conditions. We have also tested a selection of fingerprint image-quality estimation algorithms. For the experiments, we employ the BioSec multimodal baseline corpus, which includes 19 200 fingerprint images from 200 individuals acquired in two sessions with three different sensors. The behavior of the selected quality measures is compared, showing high correlation between them in most cases. The effect of low-quality samples in the verification performance is also studied for a widely available minutiae-based fingerprint matching system.
Abstract-A robust face detection technique along with mouth localization, processing every frame in real time (video rate), is presented. Moreover, it is exploited for motion analysis onsite to verify "liveness" as well as to achieve lip reading of digits. A methodological novelty is the suggested quantized angle features ("quangles") being designed for illumination invariance without the need for preprocessing (e.g., histogram equalization). This is achieved by using both the gradient direction and the double angle direction (the structure tensor angle), and by ignoring the magnitude of the gradient. Boosting techniques are applied in a quantized feature space. A major benefit is reduced processing time (i.e., that the training of effective cascaded classifiers is feasible in very short time, less than 1 h for data sets of order 10 4 ). Scale invariance is implemented through the use of an image scale pyramid. We propose "liveness" verification barriers as applications for which a significant amount of computation is avoided when estimating motion. Novel strategies to avert advanced spoofing attempts (e.g., replayed videos which include person utterances) are demonstrated. We present favorable results on face detection for the YALE face test set and competitive results for the CMU-MIT frontal face test set as well as on "liveness" verification barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.