The Bcr-Abl tyrosine kinase oncogene causes chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). We describe a novel selective inhibitor of Bcr-Abl, AMN107 (IC50 <30 nM), which is significantly more potent than imatinib, and active against a number of imatinib-resistant Bcr-Abl mutants. Crystallographic analysis of Abl-AMN107 complexes provides a structural explanation for the differential activity of AMN107 and imatinib against imatinib-resistant Bcr-Abl. Consistent with its in vitro and pharmacokinetic profile, AMN107 prolonged survival of mice injected with Bcr-Abl-transformed hematopoietic cell lines or primary marrow cells, and prolonged survival in imatinib-resistant CML mouse models. AMN107 is a promising new inhibitor for the therapy of CML and Ph+ ALL.
In this article (Cancer Cell 7,, the name of one of the authors was listed incorrectly. The author incorrectly listed as "Azam Mohammed" is actually named Mohammad Azam.
The aetiology and cellular mechanism of chronic inflammatory processes are poorly understood. Macrophages act prominently in the inflammatory response and we report here that they express two calcium-binding proteins. The expression of these proteins, referred to as MRP-8 and MRP-14, is specific for cells of myeloid origin, namely granulocytes, monocytes and macrophages, and is observed in blood granulocytes and monocytes but not in normal tissue macrophages. In acutely inflamed tissues, macrophages can express MRP-14 but not MRP-8, and in chronic inflammations, such as primary chronic polyarthritis, infiltrate macrophages express both MRP-8 and MRP-14. Characterization of MRP-8 and MRP-14 could therefore be useful to the understanding of cellular processes induced in chronic inflammation.
The sprouting of new blood vessels, or angiogenesis, is necessary for any solid tumor to grow large enough to cause life-threatening disease. Vascular endothelial growth factor (VEGF) is one of the key promoters of tumor induced angiogenesis. VEGF receptors, the tyrosine kinases Flt-1 and KDR, are expressed on vascular endothelial cells and initiate angiogenesis upon activation by VEGF. 1-Anilino-(4-pyridylmethyl)-phthalazines, such as CGP 79787D (or PTK787 / ZK222584), reversibly inhibit Flt-1 and KDR with IC(50) values < 0.1 microM. CGP 79787D also blocks the VEGF-induced receptor autophosphorylation in CHO cells ectopically expressing the KDR receptor (ED(50) = 34 nM). Modification of the 1-anilino moiety afforded derivatives with higher selectivity for the VEGF receptor tyrosine kinases Flt-1 and KDR compared to the related receptor tyrosine kinases PDGF-R and c-Kit. Since these 1-anilino-(4-pyridylmethyl)phthalazines are orally well absorbed, these compounds qualify for further profiling and as candidates for clinical evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.