The lysC/asd gene cluster of Corynebacterium glutamicum ATCC 13032 was cloned and sequenced. The lysC locus coding for aspartokinase consists of two in-frame overlapping genes, lysC alpha encoding a protein of 421 amino acids (Mr 44,300) and lysC beta encoding a protein of 172 amino acids (Mr 18,600). The C. glutamicum aspartokinase was purified and found to contain two proteins of Mr 47,000 and Mr 18,000. A C. glutamicum mutant expressing a feedback-resistant aspartokinase was shown to be changed in a single base pair of the lysC beta gene, leading to an amino acid exchange in the beta-subunit of the aspartokinase. In addition, the identified mutation was found to be responsible for the enhanced expression of the asd gene located downstream of lysC.
The regulation of the six enzymes responsible for the conversion of aspartate to lysine, together with homoserine dehydrogenase, was studied in Corynebacterium glutamicum. In addition to aspartate kinase activity, the synthesis of diaminopimelate decarboxylase was also found to be regulated. The specific activity of this enzyme was reduced to one-third in extracts of cells grown in the presence of lysine. Aspartate-semialdehyde dehydrogenase, dihydrodipicolinate synthase, dihydrodipicolinate reductase, and diaminopimelate dehydrogenase were neither influenced in their specific activity, nor inhibited, by any of the aspartate family of amino acids. Homoserine dehydrogenase was repressed by methionine (to 15% of its original activity) and inhibited by threonine (4% remaining activity). Inclusion of leucine in the growth medium resulted in a twofold increase of homoserine dehydrogenase specific activity. The flow of aspartate semialdehyde to either lysine or homoserine was influenced by the activity of homoserine dehydrogenase or dihydrodipicolinate synthase. Thus, the twofold increase in homoserine dehydrogenase activity resulted in a decrease in lysine formation accompanied by the formation of isoleucine. In contrast, repression of homoserine dehydrogenase resulted in increased lysine formation. A similar increase of the flow of aspartate semialdehyde to lysine was found in strains with increased dihydrodipicolinate synthase activity, constructed by introducing the dapA gene of Escherichia coli (coding for the synthase) into C. glutamicum.
The gene cluster that codes for feedback-resistant aspartate kinase (lysCo and lysCI) and aspartate semialdehyde dehydrogenase (asd) was cloned from a mutant strain of Corynebacterium glutamicum. Its functional analysis by subcloning, enzyme assays, and type of aspartate kinase regulation enabled the isolation of a fragment for separate expression of the feedback-resistant kinase without aspartate semialdehyde dehydrogenase expression. This was used together with other clones constructed (J. Cremer, L. Eggeling, and H. Sahm, Mol. Gen. Genet. 220:478-480, 1990) to overexpress individually each of the six genes that convert aspartate to lysine. Analysis of lysine formation revealed that overexpression of the feedback-resistant kinase alone suffices to achieve lysine formation (38 mM). Also, sole overexpression of wild-type dihydrodipicolinate synthase resulted in lysine formation but in a lower amount (11 mM). The other four enzymes had no effect on lysine secretion. With a plasmid overexpressing both relevant enzymes together, a further increase in lysine yield was obtained. This shows that of the six enzymes that convert aspartate to lysine the kinase and the synthase are responsible for flow control in the wild-type background and can be useful for construction of lysine-producing strains. L-Lysine is produced in an amount approaching 100,000 tons/year with the gram-positive corynebacteria Corynebacterium glutamicum, Brevibacteriumflavum, and B. lactofermentum (18). The wild types of these bacteria do not secrete lysine, but strains producing this amino acid have been obtained by classical screening programs. During these
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.